CHAPTER 2. BASIC TOPOLOGY

Theorem 1. [Exercise 2.9(d)] For any set E, $(E^{\circ})^{c} = \overline{E^{c}}$.

Proof. Suppose $x \notin \overline{E^c} = E^c \cup (E^c)'$, i.e. $x \in E$ and $x \notin (E^c)'$. Since x is not a limit point of E^c and $x \notin E^c$, there exists a neighborhood N of x such that $N \cap E^c$ is empty, i.e. $N \subseteq E$. This means $x \in E^\circ$. Then $x \in (E^\circ)^c \Rightarrow x \in \overline{E^c}$, which shows that $(E^\circ)^c \subseteq \overline{E^c}$.

Suppose that $x \in \overline{E^c} = E^c \cup (E^c)'$, i.e. $x \notin E$ or x is a limit point of E^c . If $x \notin E$ then $x \notin E^\circ$, which means $x \in (E^\circ)^c$. If x is a limit point of E^c then for any neighborhood N of x there exists a $y \neq x$ in N such that $y \in E^c \Rightarrow y \notin E$. This shows that x cannot be an interior point of E, so $x \in (E^\circ)^c$. Thus $\overline{E^c} = (E^\circ)^c$.

Theorem 2. [Exercise 2.19(b)] If A and B are disjoint open sets, then they are separated.

Proof. We have $A \cap \overline{B} = A \cap (B \cup B') = A \cap B'$ since $A \cap B$ is empty. Suppose that there exists a $x \in A$ that is a limit point of B. Since A is open, there exists a neighborhood N of x such that $N \subseteq A$. Since x is a limit point of B, there exists a $y \in N$ such that $y \in B$. But then $y \in A$; this is a contradiction for A and B are disjoint. Therefore $A \cap B'$ is empty, and $A \cap \overline{B} = \emptyset$. Similarly, $B \cap \overline{A}$ is empty. This shows that A and B are separated.

Theorem 3. [Exercise 2.21] Let A and B be separated subsets of some \mathbb{R}^k , suppose $a \in A, b \in B$, and define

$$\mathbf{p}(t) = (1-t)\mathbf{a} + t\mathbf{b}$$

for $t \in \mathbb{R}^1$. Put $A_0 = \mathbf{p}^{-1}(A)$, $B_0 = \mathbf{p}^{-1}(B)$. Then:

- (1) A_0 and B_0 are separated subsets of \mathbb{R}^1 .
- (2) There exists a $t_0 \in (0, 1)$ such that $\mathbf{p}(t_0) \notin A \cup B$.
- (3) Every convex subset of \mathbb{R}^k is connected.

Proof. Let $x \in A_0$ so that $\mathbf{p}(x) \in A$. Since A and B are separated, $\mathbf{p}(x)$ is not a limit point of B and $\mathbf{p}(x) \notin B$. So there exists a neighborhood N of $\mathbf{p}(x)$ such that $N \cap B$ is empty. Consider $N_0 = \mathbf{p}^{-1}(N)$, which is a neighborhood of x. For every $y \in N_0$ we have $\mathbf{p}(y) \in N$ which means $\mathbf{p}(y) \notin B$. But then $y \notin B_0$, so x cannot be a limit point of B_0 . This shows that $A_0 \cap \overline{B_0}$ is empty. Similarly, $B_0 \cap \overline{A_0}$ is empty. Hence A_0 and B_0 are separated.

We know that $A_0 \cup B_0 \subseteq (0, 1)$. Suppose that $A_0 \cup B_0 = (0, 1)$. Then (0, 1) is the union of two separated sets by part (1), implying that it is disconnected. This is a

contradiction, so $A_0 \cup B_0$ is a proper subset of (0, 1) and there exists a $t_0 \in (0, 1)$ such that $t_0 \notin A_0$ and $t_0 \notin B_0$, i.e. $\mathbf{p}(t_0) \notin A \cup B$.

Let C be a convex subset of \mathbb{R}^k and suppose that $C = A \cup B$ where A and B are separated. Choose some $\mathbf{a} \in A$ and $\mathbf{b} \in B$. Then there exists a $t_0 \in (0, 1)$ such that $(1 - t_0)\mathbf{a} + t_0\mathbf{b} \notin C$ by statement (2). This contradicts the fact that C is a convex set. Hence C must be connected.

Theorem 4. [Exercise 2.23] Every separable metric space has a countable base.

Proof. Let X be a separable metric space and let Y be a countable dense subset of X. Let $B = \{V_{\alpha,r}\}$ be the collection of all neighborhoods $N_r(\alpha)$ where $\alpha \in Y$ and $r \in \mathbb{Q}$. B is countable since $Y \times \mathbb{Q}$ is countable; we want to show that B is a base for X. Let E be an open set in X. For every $x \in E$, there exists a neighborhood N of x with radius r such that $N \subseteq E$. Let r_1 be some positive rational number less than r/2 and let $N_1 = N_{r_1}(x)$. Since x is a limit point of Y, there exists a $y \in N_1$ such that $y \in Y$. Now let $V = N_{r_1}(y)$; since $d(x, y) < r_1, x \in V$. Also $V \subseteq N \subseteq E$, since for every $v \in V, d(v, x) \leq d(v, y) + d(y, x) < 2r_1 < r$. Since $y \in Y$ and $r_1 \in \mathbb{Q}, V \in B$. This shows that B is a countable base for X.

Theorem 5. [Exercise 2.24] If X is a metric space in which every infinite subset has a limit point, then X is separable.

Proof. Fix $\delta > 0$ and choose $x_1 \in X$. Having chosen $x_1, \ldots, x_j \in X$, choose $x_{j+1} \in X$, if possible, so that $d(x_i, x_{j+1}) \geq \delta$ for $i = 1, \ldots, j$. Suppose that this process does not terminate after a finite number of steps. Then we have an infinite set $S = \{x_1, x_2, \ldots\}$ in which $d(x_i, x_j) \geq \delta$ for every $j \neq i$. Suppose that x_0 is a limit point of S. Then there are an infinite number elements $x_i \in S$ such that $d(x_0, x_i) < \delta/2$. But if x_i, x_j are two such elements, $d(x_i, x_j) \leq d(x_i, x) + d(x, x_j) < \delta$, which is a contradiction. Hence S cannot have any limit points. This contradicts the assumption that every infinite subset has a limit point, so the process must terminate after a finite number of steps. Let $S_{\delta} = \{x_1, x_2, \ldots\}$ be the set of points found by this process for some δ .

The union $C = N_{\delta}(x_1) \cup N_{\delta}(x_2) \cup \cdots$ covers X for if $x \in X \setminus C$, then x would have been added to S_{δ} . Let $D = \bigcup_{n=1}^{\infty} S_{1/n}$; we want to show that D is a countable dense subset of X. That D is countable is clear since each $S_{1/n}$ is finite. Let $x \in X$ and let N be a neighborhood of x with radius r. Let n be a positive integer such that n > 1/r. There exists some $S_{1/n} \subseteq D$ and some $s \in S_{1/n}$ such that $N_{1/n}(s)$ contains x, since $\bigcup_{s \in S_{1/n}} N_{1/n}(s)$ covers X. Now d(s, x) < 1/n < r, so $s \in N$. Therefore x is a limit point of D. This proves that X is separable.

Lemma 6. Let X be a metric space with a countable base. Then X is separable.

Proof. Let $V = \{V_1, V_2, ...\}$ be a countable base for X. For every *i* choose an element $x_i \in V_i$, and let $D = \{x_1, x_2, ...\}$; D is countable since V is countable. Let $x \in X$ and let N be a neighborhood of x. Then N is the union of a subcollection of V and therefore contains some element from D. This shows that x is a limit point of D, and that D is dense in X.

Theorem 7. [Exercise 2.25] Every compact metric space K has a countable base, and K is therefore separable.

Proof. Let B_n be the collection of all neighborhoods $N_r(\alpha)$ with r = 1/n and $\alpha \in K$. Since B_n is an open cover of K and K is compact, there exists a finite subcover $C_n = \{V_1, V_2, \ldots, V_k\} \subset B_n$ that covers K. Let $C = C_1 \cup C_2 \cup \cdots$; C is countable since each C_i is countable. Let E be an open set in K. For every $x \in E$, there exists a neighborhood N of x with radius r such that $N \subseteq E$. Let n be a positive integer such that n > 2/r. There exists some neighborhood $N_1 \in C_n$ centered at α such that $x \in N_1$, since C_n covers K. Also, $N_1 \subseteq N \subseteq E$ since for every $y \in N_1$, $d(x,y) \leq d(x,\alpha) + d(\alpha,y) < 1/n + 1/n < r$. This shows that C is a countable base for K. Lemma 6 shows that K is separable.

Theorem 8. [Exercise 2.26] If X is a metric space in which every infinite subset has a limit point, then X is compact.

Proof. By Theorem 5, X is separable, and by Theorem 4, X has a countable base $V = \{V_1, V_2, \ldots\}$. Let $\{G_\alpha\}$ be an open cover of X. For every $x \in X$, there is some open set G_α such that $x \in G_\alpha$. Since V is a base for X, there exists a $V_i \in V$ with $x \in V_i \subseteq G_\alpha$. This means that there is a countable subcover $\{G_i\}$ of X since each G_α was associated with an element of V. Suppose that no finite subcollection of $\{G_i\}$ covers X. For every positive integer n, let $F_n = (G_1 \cup \cdots \cup G_n)^c$. Since $\{G_1, \ldots, G_n\}$ is a finite subcollection, each F_n is nonempty while $\bigcap_{n=1}^{\infty} F_n = (\bigcup_{i=1}^{\infty} G_i)^c$ is empty since $\{G_i\}$ covers X.

Let $E = \{f_1, f_2, \ldots\}$ be a set where each f_i is chosen from F_i . Since E is an infinite subset of X, E has a limit point x. Suppose that $x \notin F_i$ for some i. Since F_i^c is open, there exists a neighborhood N of x with radius r such that $N \cap F_i = \emptyset$. In fact, $N \cap F_j = \emptyset$ for every $j \ge i$ since $F_1 \supseteq F_2 \supseteq \cdots$, and therefore $N \cap E$ is finite. But xis a limit point of E, so $N \cap E$ must be infinite. This is a contradiction, and therefore $x \in F_i$ for all i. Then $x \in \bigcap_{n=1}^{\infty} F_n$ but this is a contradiction for $\bigcap_{n=1}^{\infty} F_n$ is empty. Thus there is a finite subcollection of $\{G_i\}$ that covers X, and X must be compact. \Box

Chapter 3. Numerical Sequences and Series

Theorem 9. A sequence $\{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p.

Proof. Suppose that $\{p_n\}$ converges to p and let $\{p_{n_i}\}$ be a subsequence of $\{p_n\}$. Let $\varepsilon > 0$ be given. Then there exists an integer N such that for every $n \ge N$, $d(p_n, p) < \varepsilon$. Let N' be the smallest i such that $n_i \ge N$. Then for every $i \ge N'$, $d(p_{n_i}, p) < \varepsilon$. Therefore $\{p_{n_i}\}$ converges to p. Conversely, suppose that every subsequence of $\{p_n\}$ converges to p. $\{p_n\}$ is a subsequence of itself, so it converges to p. \Box

Theorem 10. Let $\{s_n\}$ and $\{t_n\}$ be sequences in \mathbb{R} . If $s_n \leq t_n$ for $n \geq N$ where N is some constant, if $s_n \rightarrow s$, and if $t_n \rightarrow t$, then $s \leq t$.

Proof. Assume $s \neq t$ so that |t-s| > 0, for otherwise we are done. Since $s_n \rightarrow s$ and $t_n \rightarrow t$, $t_n - s_n \rightarrow t - s$. There exists a M such that for every $m \geq M$, $|t_m - s_m - (t-s)| < |t-s|$. Whenever $k \geq \max(M, N)$, both $t_k - s_k \geq 0$ and $t_k - s_k - (t-s) < |t-s|$ hold. We know t-s > 0 for if t-s < 0, then $t_k - s_k < 0$ which is a contradiction.

Theorem 11. Let $\{x_n\}$ and $\{s_n\}$ be sequences in \mathbb{R} . If $0 \le x_n \le s_n$ for $n \ge N$ where N is some constant, and if $s_n \to 0$, then $x_n \to 0$.

Proof. Let $\varepsilon > 0$ be given. Since $s_n \to 0$, there exists a M such that for every $n \ge M$, $|s_n| < \varepsilon$. Let $N' = \max(M, N)$; then for every $n \ge N'$, $|x_n| \le s_n \le \varepsilon$. Therefore $x_n \to 0$.

Corollary 12. Let $\{x_n\}, \{s_n\}, \{s'_n\}$ be sequences in \mathbb{R} . If $s_n \leq x_n \leq s'_n$ for $n \geq N$ where N is some constant, if $s_n \to s$, and if $s'_n \to s$, then $x_n \to s$.

Theorem 13. Let $\{s_n\}, \{t_n\}$ be sequences in a metric space. If $s_n \to s$ and $d(s_n, t_n) \to 0$, then $t_n \to s$.

Proof. Let $\varepsilon > 0$ be given. There exists a M such that $d(s_n, t_n) < \varepsilon/2$ whenever $n \ge M$, and there exists a N such that $d(s, s_n) < \varepsilon/2$ whenever $n \ge N$. Then for all $n \ge \max(M, N)$ we have

$$d(s, t_n) \le d(s, s_n) + d(s_n, t_n)$$

< \varepsilon.

Theorem 14. [Theorem 3.19] If $s_n \leq t_n$ for $n \geq N$ where N is fixed, then $\limsup_{n \to \infty} s_n \leq \limsup_{n \to \infty} t_n \quad \text{and} \quad \liminf_{n \to \infty} s_n \leq \liminf_{n \to \infty} t_n.$

Proof. Let E_1 be the set of subsequential limits of $\{s_n\}$ and let E_2 be the set of subsequential limits of $\{t_n\}$. Let $L_1 = \limsup_{n \to \infty} s_n$ and $L_2 = \limsup_{n \to \infty} t_n$. If $L_1 = -\infty$ or $L_2 = +\infty$, then there is nothing to prove. Otherwise, $L_1 \in E_1$ and there exists a subsequence $\{s_{n_i}\}$ that converges to L_1 . Similarly, some $\{t_{n'_i}\}$ converges to L_2 . Let m_1

be the minimum *i* such that $n_i \ge N$ and let m_2 be the minimum *i* such that $n'_i \ge N$. Let $M = \max(m_1, m_2)$; then $s_{n_i} \le t_{n'_i}$ for all $i \ge M$ since $s_n \le t_n$ whenever $n \ge N$. Theorem 10 proves the required result. The case for limiting is similar.

Lemma 15. Let $S = \{s_n\}$ be a sequence in \mathbb{R} and let E be the set of subsequential limits of $\{s_n\}$. Then $\sup E \in (-\infty, +\infty)$ if and only if S is bounded.

Proof. Suppose that S is not bounded above, i.e. for every $x \in \mathbb{R}$ there exists a $s_i \in S$ such that $s_i > x$. Let $n_1 = 1$ and suppose that n_1, \ldots, n_k have been chosen. Choose n_{k+1} to be the smallest i such that $i > n_k$ and $s_i > s_{n_k}$. Then the subsequence $\{s_{n_k}\}$ approaches $+\infty$ and hence $\sup E = +\infty$. Similarly, if S is not bounded below then $\sup E = -\infty$. Conversely, if $\sup E = +\infty$ then there exists a subsequence $\{s_{n_k}\}$ such that for every M, $s_{n_k} \ge M + 1 > M$ for some n_k . The case for $\sup E = -\infty$ is similar. Hence S is unbounded.

Theorem 16. [Equivalence of lim sup definitions.] Let $S = \{s_n\}$ be a sequence in \mathbb{R} , let $S_n = \{s_n, s_{n+1}, \ldots\}$ and let E be the set of subsequential limits of $\{s_n\}$. Let $L \in [-\infty, \infty]$. Then the following are equivalent:

- (1) $L = \sup E$.
- (2) $L \in E$ and for every x > L there is an integer N such that $n \ge N$ implies $s_n < x$.
- (3) $L = \lim_{n \to \infty} \sup S_n$.

Furthermore, any L with these properties is unique.

Proof. We will show that $(1) \Leftrightarrow (2)$ and $(1) \Leftrightarrow (3)$. Suppose that $L = \sup E$ and let x be a number with x > L. That $L \in \sup E$ is clear. We can now assume that $L < +\infty$, for if $L = +\infty$ then there is no such x greater than L. Suppose that $s_n \ge x$ for infinitely many values of n; this forms a subsequence of $\{s_n\}$ consisting of all $s_{n_i} \ge x$. Some subsequence of this subsequence converges to a value y, since $s_{n_i} \ge x$ and $\sup E < +\infty$ implies that $\{s_{n_i}\}$ is bounded by Lemma 15. Then $L \ge y \ge x > L$, which is a contradiction. Conversely, suppose that (2) holds for L and suppose that $L < \sup E$. Then choose x such that $L < x < \sup E$, and there is an integer N such that $n \ge N$ implies $s_n < x$. Every subsequence of $\{s_n\}$ must have a limit no greater than $x < \sup E$ by Theorem 10, and this contradicts the fact that $\sup E$ is the least upper bound. Therefore $L \ge \sup E$, and since $L \in E$, $L = \sup E$. This proves (1) \Leftrightarrow (2).

Let $L = \sup E$ so that (2) holds. Let $\varepsilon > 0$ be given. There exists an integer N such that $n \ge N$ implies $s_n < L + \varepsilon/2$. Whenever $n \ge N$, $\sup S_n \le L + \varepsilon/2$ so that $\sup S_n - L < \varepsilon$. Suppose that $\sup S_n < L$; we can choose x such that $\sup S_n < x < L$. Since every s_k with $k \ge n$ has $s_k < x$, every subsequence of $\{s_n\}$ must have a limit no greater than $x < \sup E$ by Theorem 10. Since L is the least upper bound of E,

 $L \leq x < L$ which is a contradiction. Therefore $0 \leq \sup S_n - L < \varepsilon$, showing that $\lim_{n \to \infty} \sup S_n = L$. This proves (1) \Leftrightarrow (3).

Theorem 17. [Exercise 3.5] For any two real sequences $\{a_n\}$ and $\{b_n\}$,

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n,$$

provided that the sum on the right is not of the form $\infty - \infty$.

Proof. If $\limsup_{n\to\infty} (a_n + b_n) = \pm \infty$ then we are done. Otherwise, let

$$L = \limsup_{n \to \infty} (a_n + b_n),$$

$$L_1 = \limsup_{n \to \infty} a_n,$$

$$L_2 = \limsup_{n \to \infty} b_n.$$

There is a subsequence $\{c_{n_i}\}$ of $\{a_n + b_n\}$ that converges to L. For each n_i , $c_{n_i} = a_{n_i} + b_{n_i}$ for some subsequences $\{a_{n_i}\}, \{b_{n_i}\}$ so that L = a + b if we let a be the limit of a_{n_i} and b be the limit of b_{n_i} . Then $L = a + b \leq L_1 + L_2$, which proves the result.

Theorem 18. [Exercise 3.7] If $a_n \ge 0$ for all n and $\sum a_n$ converges, then $\sum \frac{\sqrt{a_n}}{n}$ converges.

Proof. Let $t_n = \sum_{k=1}^n \frac{\sqrt{a_k}}{k}$; clearly $t_n \ge 0$ for all n. Let $b_k = 1/k$, and by the Cauchy-Schwarz inequality,

$$\left(\sum_{k=1}^{n} \frac{\sqrt{a_k}}{k}\right)^2 \le \sum_{k=1}^{n} a_k \sum_{k=1}^{n} \frac{1}{k^2}$$
$$t_n = \sum_{k=1}^{n} \frac{\sqrt{a_k}}{k} \le \sqrt{\sum_{k=1}^{n} a_k \sum_{k=1}^{n} \frac{1}{k^2}}$$
$$\le \sqrt{ab}$$

where $a = \lim_{n \to \infty} a_n$ and $b = \lim_{n \to \infty} 1/n^2$. Thus $\{t_n\}$ must be a bounded sequence and hence $\sum \frac{\sqrt{a_n}}{n}$ converges.

Theorem 19. [Exercise 3.8] If $\sum a_n$ converges and $\{b_n\}$ is monotonic and bounded, then $\sum a_n b_n$ converges.

Proof. Suppose that $\{b_n\}$ is monotonically increasing and let B be the limit of $\{b_n\}$ so that $b_n \leq B$ for every n. Let $C = B \sum a_n - \sum a_n (B - b_n)$. Since $B - b_n \to 0$

and $\{B - b_n\}$ is monotonically decreasing, we can apply Theorem 3.42 to deduce that $\sum a_n (B - b_n)$ converges. Then

$$C = B \sum a_n - \sum a_n (B - b_n)$$
$$= \sum a_n b_n$$

converges. The case for $\{b_n\}$ being monotonically decreasing is similar.

Theorem 20. [Exercise 3.10] If $\sum a_n z^n$ is a power series where infinitely many coefficients are distinct from zero, then the radius of convergence is at most 1.

Proof. Suppose that the radius of convergence R > 1, i.e. $\sum a_n \gamma^n$ converges for some $1 < \gamma < R$. By the root test, $\limsup_{n\to\infty} \sqrt[n]{|a_n\gamma^n|} = \limsup_{n\to\infty} \gamma \sqrt[n]{|a_n|} \le 1$, which means that $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = L$ where L < 1. There exists some subsequence $S = \left\{ \sqrt[n_i]{|a_{n_i}|} \right\}$ that converges to L, and the neighborhood $N_{1-L}(L)$ contains infinitely many points a_k of S with $0 \le \sqrt[k]{|a_k|} < 1$. But then infinitely many points a_k have $0 \le |a_k| < 1$, and thus infinitely many points are zero since each a_k is an integer. This is a contradiction, so the radius of convergence must not be greater than 1.

Theorem 21. [Exercise 3.11] Suppose that $a_n > 0$, $s_n = a_1 + \cdots + a_n$ and that $\sum a_n$ diverges. Then:

(1) The series
$$\sum \frac{a_n}{1+a_n}$$
 diverges.
(2) For all $N, k \ge 1$, $\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+k}}$ and $\sum \frac{a_n}{s_n}$ diverges.
(3) For all $n, \frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$ and $\sum \frac{a_n}{s_n^2}$ converges.
(4) $\sum \frac{a_n}{1+na_n}$ sometimes converges and $\sum \frac{a_n}{1+n^2a_n}$ always converges.

Proof. Suppose that $\sum \frac{a_n}{1+a_n}$ converges. Then $\lim_{n\to\infty} \frac{a_n}{1+a_n} = 0$, and $\lim_{n\to\infty} a_n = 0$ (this can be shown using an ε argument). There exists an integer N such that $a_n < 1$ whenever $n \ge N$, and furthermore since $\sum \frac{a_n}{1+a_n}$ converges, for any $\varepsilon > 0$ there exists an integer M such that $\sum_{k=m}^n \frac{a_k}{1+a_k} < \varepsilon/2$ whenever $n \ge M$. Therefore whenever

 $n \ge m \ge \max(M, N),$

$$\varepsilon > 2 \sum_{k=m}^{n} \frac{a_k}{1+a_k}$$
$$> 2 \sum_{k=m}^{n} \frac{a_k}{1+1}$$
$$> \sum_{k=m}^{n} a_k$$

and $\sum a_n$ converges. This shows that $\sum \frac{a_n}{1+a_n}$ diverges if $\sum a_n$ diverges. For $N, k \ge 1$,

$$s_{N+k} - s_N = a_{N+1} + a_{N+2} + \dots + a_{N+k}$$
$$1 - \frac{s_N}{s_{N+k}} = \frac{a_{N+1}}{s_{N+k}} + \frac{a_{N+1}}{s_{N+k}} + \dots + \frac{a_{N+k}}{s_{N+k}}$$
$$\leq \frac{a_{N+1}}{s_{N+1}} + \frac{a_{N+1}}{s_{N+2}} + \dots + \frac{a_{N+k}}{s_{N+k}}.$$

Suppose that $\sum \frac{a_n}{s_n}$ converges. Then there exists a N such that whenever $n+j \ge n \ge N$,

$$1 - \frac{s_n}{s_{n+j}} \le \sum_{k=n}^{n+j} \frac{a_n}{s_n} < \frac{1}{2}$$

so that for all j, $2s_n > s_{n+j}$. But $\{s_n\}$ is not bounded since $\sum_{n=1}^{\infty} a_n$ diverges, and there is some j such that $s_{n+j} > 2s_n$. This is a contradiction, so $\sum_{n=1}^{\infty} \frac{a_n}{s_n}$ cannot converge.

For the third inequality,

$$1 < \frac{s_n}{s_{n-1}}$$

$$a_n < \frac{s_n (s_n - s_{n-1})}{s_{n-1}}$$

$$\frac{a_n}{s_n^2} < \frac{s_n - s_{n-1}}{s_n s_{n-1}}$$

$$= \frac{1}{s_{n-1}} - \frac{1}{s_n}.$$

For any $\varepsilon > 0$, there is some N for which $s_{N-1} > \frac{1}{\varepsilon}$ since $\{s_n\}$ is not bounded. Then for all $n \ge m \ge N$,

$$\sum_{k=m}^{n} \frac{a_n}{s_n^2} < \sum_{k=m}^{n} \left(\frac{1}{s_{n-1}} - \frac{1}{s_n} \right)$$

$$< \frac{1}{s_{m-1}} - \frac{1}{s_n}$$

$$< \frac{1}{s_{m-1}} - \frac{1}{s_n}$$

$$< \varepsilon$$

since $\{s_n\}$ is monotonically increasing. Hence $\sum \frac{a_n}{s_n^2}$ converges.

The series $\sum \frac{a_n}{1+na_n}$ may or may not converge. If $a_n = 1$ then the series does not converge, but if $a_n = [n = m^2]$ where $[\dots]$ is the Iverson bracket, then the series converges. The series $\sum \frac{a_n}{1+n^2a_n}$ always converges since $\frac{a_n}{1+n^2a_n} = \frac{1}{a_n+n^2} < \sum \frac{1}{n^2}$ and the series on the right hand side converges.

Theorem 22. [Exercise 3.12] Suppose that $a_n > 0$ and that $\sum a_n$ converges. Let $r_n = \sum_{m=n}^{\infty} a_m$. Then:

(1) If
$$m < n$$
 then $\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > 1 - \frac{r_n}{r_m}$, and $\sum \frac{a_n}{r_n}$ diverges.
(2) For any n , $\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$, and $\sum \frac{a_n}{\sqrt{r_n}}$ converges.

Proof. If m < n then

$$r_m - r_n < a_m + a_{m+1} + \dots + a_n$$

$$1 - \frac{r_n}{r_m} < \frac{a_m}{r_m} + \frac{a_{m+1}}{r_m} + \dots + \frac{a_n}{r_m}$$

$$< \frac{a_m}{r_m} + \frac{a_{m+1}}{r_{m+1}} + \dots + \frac{a_n}{r_n}.$$

Suppose that $\sum \frac{a_n}{r_n}$ converges. Then there exists an integer N such that for all $n \ge m \ge N$,

$$1 - \frac{r_n}{r_m} < \sum_{k=m}^n \frac{a_k}{r_k} < \frac{1}{2}$$

so that for all n > m, $2r_n > r_m$. Since $\sum a_n$ converges, $a_n \to 0$ which means $r_n \to 0$. Hence we can find an integer n such that $r_n < r_m/2$, which is a contradiction. This shows that $\sum \frac{a_n}{r_n}$ does not converge. To prove the second inequality,

$$4r_n (r_n - a_n) < 4r_n^2 - 4a_n r_n + a_n^2$$

= $(2r_n - a_n)^2$
 $2\sqrt{r_n}\sqrt{r_n - a_n} < 2r_n - a_n$
 $a_n < 2(r_n - \sqrt{r_n}\sqrt{r_n - a_n})$
 $\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}}).$

For any $\varepsilon > 0$, there exists some integer N such that $r_N < \left(\frac{\varepsilon}{2}\right)^2$ since $r_n \to 0$. Then for all $n \ge m \ge N$,

$$\sum_{k=m}^{n} \frac{a_k}{\sqrt{r_k}} < 2 \sum_{k=m}^{n} \left(\sqrt{r_k} - \sqrt{r_{k+1}}\right)$$
$$< 2 \left(\sqrt{r_m} - \sqrt{r_{n+1}}\right)$$
$$< \varepsilon$$

since $\{r_n\}$ is monotonically decreasing. Hence $\sum \frac{a_n}{\sqrt{r_n}}$ converges.

Theorem 23. [Exercise 3.13] The Cauchy product of two absolutely convergent series converges absolutely.

Proof. Let $\sum a_n$ and $\sum b_n$ be two absolutely convergent series; we have $\sum |a_n| \leq M_1$ and $\sum |b_n| \leq M_2$ for some M_1, M_2 . Let $c_n = \sum_{k=0}^n a_k b_{n-k}$. For all n,

$$\sum_{k=0}^{n} |c_k| = \sum_{k=0}^{n} \left| \sum_{j=0}^{k} a_j b_{k-j} \right|$$
$$\leq \sum_{k=0}^{n} \sum_{j=0}^{k} |a_j| |b_{k-j}|$$
$$= \sum_{0 \le j \le k \le n} |a_j| |b_{k-j}|$$
$$\leq \sum_{0 \le j, k \le n} |a_j| |b_{n-j}|$$
$$= \left(\sum_{j=0}^{n} |a_j| \right) \left(\sum_{k=0}^{n} |b_k| \right)$$
$$\leq M_1 M_2$$

so that sequence of partial sums of $\sum |c_n|$ is bounded. Therefore $\sum c_n$ converges absolutely.

Theorem 24. [Exercise 3.20] Let $\{p_n\}$ be a Cauchy sequence in a metric space X where some subsequence $\{p_{n_i}\}$ converges to a point $p \in X$. Then the sequence $\{p_n\}$ converges to p.

Proof. Let $\varepsilon > 0$ be given. There exists some N such that for all $m, n \ge N, d(p_m, p_n) < \varepsilon/2$. Also, there exists some K such that for all $k \ge K, d(p_{n_k}, p) < \varepsilon/2$. Let j be the smallest integer such that $n_j \ge \max(N, n_K)$. Then for all $n \ge n_j, d(p_n, p) \le d(p_n, p_{n_j}) + d(p_{n_j}, p) < \varepsilon$. This shows that $p_n \to p$.

Theorem 25. [Exercise 3.21] If $\{E_n\}$ is a sequence of closed, nonempty and bounded sets in a complete metric space X, if $E_n \supseteq E_{n+1}$, and if $\lim_{n\to\infty} \operatorname{diam} E_n = 0$, then $\bigcap_{n=1}^{\infty} E_n$ consists of exactly one point.

Proof. Let $\{p_n\}$ be a sequence where each p_i is a point chosen from E_i . Let $\varepsilon > 0$ be given. Since diam $E_n \to 0$, there exists some N such that diam $E_n < \varepsilon$ whenever $n \ge N$. Then for all $m, n \ge N$, $d(p_m, p_n) < \varepsilon$ since $p_m, p_n \in E_N$. This shows that $\{p_n\}$ is a Cauchy sequence, and since X is complete, $\{p_n\}$ converges. Suppose that $p \notin E_i$ for some i. Then $p \in E_i^c$ and since E_i^c is open, there exists some neighborhood N of p with radius r such that $N \cap E_i = \emptyset$. In fact, $N \cap E_j = \emptyset$ for every $j \ge i$ since $E_1 \supseteq E_2 \supseteq \cdots$. Since $\{p_n\}$ converges to p, there exists some M such that $d(p_m, p) < r$ whenever $m \ge M$. Let $k = \max(i, M)$ and consider p_k ; we have $p_k \in E_k$ but $p_k \in N$ since $k \ge M$, which means that $p_k \notin E_i$ and $p_k \notin E_k$. This is a contradiction, so $p \in E_i$ for all i, i.e. $\bigcap_{n=1}^{\infty} E_n$ is nonempty. Furthermore, since diam $E_n \to 0$, $\bigcap_{n=1}^{\infty} E_n$ must consist of exactly one point.

Theorem 26. [Exercise 3.22, Baire's theorem] If X is a nonempty complete metric space, and $\{G_n\}$ is a sequence of dense open subsets of X, then $\bigcap_{n=1}^{\infty} G_n$ is not empty.

Proof. Let g_1 be a point in G_1 and let N_1 be a neighborhood of g_1 wholly contained in G_1 . Let E_1 be a neighborhood of g_1 such that $\overline{E_1} \subseteq N_1$. Having constructed E_1, \ldots, E_n such that $E_1 \supseteq \cdots \supseteq E_n$ and $\overline{E_{i+1}} \subset E_i \subseteq G_i$ for each i, let g_n be the center of E_n . Since G_{n+1} is dense in X, E_n contains a point $g_{n+1} \in G_{n+1}$. Let E_{n+1} be a neighborhood of g_{n+1} such that $\overline{E_{n+1}} \subset E_n$. We can continue this process to obtain a sequence $\overline{E_1} \supseteq \overline{E_2} \supseteq \cdots$. By Theorem 25, there is exactly one point $x \in \bigcap_{n=1}^{\infty} \overline{E_n}$. But we have $\overline{E_i} \subseteq G_i$ for each i, which means that $x \in \bigcap_{n=1}^{\infty} G_n$ and therefore $\bigcap_{n=1}^{\infty} G_n$ is not empty.

Theorem 27. [Exercise 3.23] Let $\{p_n\}$ and $\{q_n\}$ be Cauchy sequences in a metric space X. Then the sequence $\{d(p_n, q_n)\}$ converges.

Proof. Let $\varepsilon > 0$ be given. There exists, by taking a maximum, an integer N such that for all $m, n \ge N$, $d(p_m, p_n) < \varepsilon/2$ and $d(q_m, q_n) < \varepsilon/2$. Then

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n)$$

$$d(p_n, q_n) - d(p_m, q_m) \le d(p_n, p_m) + d(q_m, q_n)$$

and similarly,

$$d(p_m, q_m) \le d(p_m, p_n) + d(p_n, q_n) + d(q_n, q_m)$$

$$d(p_m, q_m) - d(p_n, q_n) \le d(p_m, p_n) + d(q_n, q_m).$$

This shows that

$$|d(p_n, q_n) - d(p_m, q_m)| \le d(p_m, p_n) + d(q_n, q_m)$$

< ε

which means that $\{d(p_n, q_n)\}$ converges.

Theorem 28. [Exercise 3.24] Let X be a metric space.

- (1) Call two Cauchy sequences $\{p_n\}, \{q_n\}$ in X equivalent if $\lim_{n\to\infty} d(p_n, q_n) = 0$. This is an equivalence relation.
- (2) Let X^* be the set of all equivalence classes obtained by the above equivalence relation. If $P \in X^*$, $Q \in X^*$, $\{p_n\} \in P$, $\{q_n\} \in Q$, define $\triangle(P,Q) = \lim_{n \to \infty} d(p_n, q_n)$. The number $\triangle(P,Q)$ is unchanged if $\{p_n\}$ and $\{q_n\}$ are replaced by equivalent sequences, and hence that \triangle is a distance function in X^* .
- (3) The metric space X^* is complete.
- (4) For each $p \in X$, there is a Cauchy sequence all of whose terms are p; let P_p be the element of X^* which contains this sequence. Then $\triangle(P_p, P_q) = d(p, q)$ for all $p, q \in X$.
- (5) Let $\varphi : X \to X^*$ be given by $p \mapsto P_p$ where P_p is the element of X^* which contains a sequence with all terms equal to p. Then $\varphi(X)$ is dense in X^* , and if X is complete, then $\varphi(X) = X^*$.
- (6) The completion of \mathbb{Q} is \mathbb{R} .

Proof. It is obvious that the relation is reflexive and symmetric. Let $\{p_n\}, \{q_n\}, \{r_n\}$ be sequences such that $\lim_{n\to\infty} d(p_n, q_n) = 0$ and $\lim_{n\to\infty} d(q_n, r_n) = 0$. Let $\varepsilon > 0$ be

given. There exists, by taking a maximum, an integer N such that for all $n \ge N$,

$$d(p_n, r_n) \le d(p_n, q_n) + d(q_n + r_n)$$

< ε ,

which shows that $\lim_{n\to\infty} d(p_n, r_n) = 0$. Therefore the relation is transitive.

 $d(p_n, q_n) < \varepsilon/2$ and $d(q_n, r_n) < \varepsilon/2$. Then

Let $P \in X^*$, $Q \in X^*$, $\{p_n\} \in P$, $\{q_n\} \in Q$. Let $\{p'_n\} \in P$ and $\{q'_n\} \in Q$ be sequences equivalent to $\{p_n\}$ and $\{q_n\}$ respectively. We must show that $\lim_{n\to\infty} d(p_n, q_n) = \lim_{n\to\infty} d(p'_n, q'_n)$. Since both limits exist, it suffices to prove that

$$\lim_{n \to \infty} \left[d(p_n, q_n) - d(p'_n, q'_n) \right] = 0.$$

From the equivalence of the sequences, we have for any $\varepsilon > 0$ an integer N such that for all $n \ge N$, $d(p_n, p'_n) < \varepsilon/2$ and $d(q_n, q'_n) < \varepsilon/2$. Then

$$d(p_n, q_n) \le d(p_n, p'_n) + d(p'_n, q'_n) + d(q_n, q'_n)$$

$$d(p_n, q_n) - d(p'_n, q'_n) \le d(p_n, p'_n) + d(q_n, q'_n)$$

$$< \varepsilon$$

and by symmetry (compare Theorem 27), $|d(p_n, q_n) - d(p'_n, q'_n)| < \varepsilon$. Therefore

$$\lim_{n \to \infty} \left[d\left(p_n, q_n \right) - d\left(p'_n, q'_n \right) \right] = 0,$$

which proves that $\triangle : X^* \times X^* \to \mathbb{R}$ is well-defined. It is simple to verify that \triangle is a metric in X^* .

Let $\{P_n\}$ be a Cauchy sequence in X^* ; write $P_n = [\{p_{n,m}\}]$ where $\{p_{n,m}\}$ is a sequence in m. For any $\varepsilon > 0$ there exists some N such that for all $m, n \ge N$, $\triangle (P_m, P_n) < \varepsilon$. Incomplete.

Let $p, q \in X$. Then $\triangle (P_p, P_q) = \lim_{n \to \infty} d(p_n, q_n) = d(p, q)$ by definition.

Let $Y = \varphi(X)$ and let $P = [\{p_k\}] \in X^*$ (where $\{p_k\}$ is a representative from the equivalence class), supposing that $P \notin Y$. Let N be a neighborhood of P with radius r. There exists some M such that for all $m, n \ge M$, $d(p_m, p_n) < r$. Let $Q = \varphi(p_M) \in Y$. We want to show that $Q \in N$; we have $d(p_n, p_M) < r$ whenever $n \ge M$, and therefore

$$\triangle (P,Q) = \lim_{n \to \infty} d(p_n, p_M) < r.$$

This proves that $\varphi(X)$ is dense in X^* . Second part incomplete.

Theorem 29. Let $X \subseteq \mathbb{R}$, $f, g: X \to \mathbb{R}$ and let a be a limit point of X. If $f(x) \leq g(x)$ for all x in a neighborhood of a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x),$$

provided that both limits exist.

Proof. Let N be a neighborhood of a with radius r such that $f(x) \leq g(x)$ for all $x \in N$. Suppose that $\lim_{x\to a} [g(x) - f(x)] = L < 0$. Then there exists a $\delta > 0$ such that |g(x) - f(x) - L| < -L and g(x) < f(x) whenever $0 < |x - a| < \delta$. Choose a point x such that $0 < |x - a| < \min(\delta, r)$; this results in a contradiction.

Corollary 30. Let $f, g : [a, \infty) \to \mathbb{R}$. If $f(x) \leq g(x)$ for all $x \geq a$, then

$$\lim_{x \to \infty} f(x) \le \lim_{x \to \infty} g(x),$$

provided that both limits exist.

Theorem 31. [Theorem 4.8] A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.

Proof. Suppose that f is continuous on X. Let V be an open set in Y and let $p \in f^{-1}(V)$. There exists a neighborhood N of f(p) with radius r wholly contained in V. Since f is continuous, there exists a $\delta > 0$ such that $d_Y(f(p), f(x)) < r$ whenever $x \in X$ and $d_X(p, x) < \delta$. Therefore, $N_{\delta}(p)$ is an open set of X wholly contained in $f^{-1}(V)$. This shows that $f^{-1}(V)$ is an open set. Conversely, suppose that $f^{-1}(V)$ is open in X for every open set V in Y. Let $p \in X$ and let $\varepsilon > 0$ be given. Let V be a neighborhood of f(p) with radius ε so that $f^{-1}(V)$ is open in X. Since $p \in f^{-1}(V)$, there exists a neighborhood N of p with radius δ such that N is wholly contained in $f^{-1}(V)$. Then for all $x \in X$ with $d_X(p, x) < \delta$, we have $d_Y(f(p), f(x)) < \varepsilon$ since $x \in f^{-1}(V)$ and $f(x) \in V$. This shows that f is continuous on X.

Theorem 32. [Examples 4.11] The map $x \mapsto |x|$ is continuous.

Proof. Let $\varepsilon > 0$ be given and let $x, y \in \mathbb{R}^k$ be arbitrary. Whenever $|x - y| < \varepsilon$, we have $||x| - |y|| \le |x - y| < \varepsilon$, which completes the proof.

Theorem 33. [Exercise 4.2] Let f be a continuous map from a metric space X to a metric space Y. Then for every set $E \subseteq X$,

$$f\left(\overline{E}\right)\subseteq\overline{f\left(E\right)}.$$

Furthermore, this inclusion can be proper for certain functions.

Proof. Let $p \in f(E)$; we must show that either $p \in f(E)$ or p is a limit point of f(E). If there is a $x \in E$ with p = f(x), then we are done. Otherwise, $p \notin f(E)$, and we can choose x with p = f(x) such that x is a limit point of E. Let N be a neighborhood of pwith radius r. Since f is continuous, there exists a $\delta > 0$ such that for all $y \in N_{\delta}(x)$ we have $f(y) \in N$. Since x is a limit point of E, there exists a z in $N_{\delta}(x)$ with $z \in E$ so that $f(z) \in N$. Furthermore, $f(z) \neq p$ since we assumed that $p \notin f(E)$. This shows that p is a limit point of f(E).

The inclusion can be proper, as in the following example. Let $f: (0,1) \to \mathbb{R}$ be defined by $x \mapsto x$; then $f(\overline{(0,1)}) = (0,1) \neq [0,1] = \overline{f((0,1))}$.

Theorem 34. [Exercise 4.3] Let f be a continuous map from a metric space X to \mathbb{R} . Let Z(f) be the set of all $p \in X$ such that f(p) = 0. Then Z(f) is closed.

Proof. By definition $Z(f) = f^{-1}(\{0\})$. Since $\{0\}$ is closed and f is continuous, Z(f) must be closed.

Theorem 35. [Exercise 4.4] Let f and g be continuous mappings from a metric space X to a metric space Y, and let E be a dense subset of X. Then

(1) f(E) is dense in f(X), and

(2) If g(p) = f(p) for all $p \in E$ then g(p) = f(p) for all $p \in X$.

Proof. We know that $\overline{E} \subseteq X$, and since E is dense in $X, X \subseteq \overline{E}$. By Theorem 33, we have $f(\overline{E}) = f(X) \subseteq \overline{f(E)}$, which shows that f(E) is dense in f(X).

To prove (2), let $p \in X$. Since E is dense in X, either $p \in E$ or p is a limit point of E. If $p \in E$, then from the assumptions we are done. Otherwise, fix $\varepsilon > 0$. Since f is continuous, there exists a $\delta_1 > 0$ such that for every $x \in N_{\delta_1}(p)$ we have $f(x) \in N_{\varepsilon}(f(p))$. Similarly, there exists a $\delta_2 > 0$ such that for every $x \in N_{\delta_2}(p)$ we have $g(x) \in N_{\varepsilon}(g(p))$. Let $\delta = \min(\delta_1, \delta_2)$. Since p is a limit point of E, there exists a point $z \in N_{\delta}(p)$ with $z \in E$. Then $f(z) \in N_{\varepsilon}(f(p))$ and $f(z) = g(z) \in N_{\varepsilon}(g(p))$ so that

$$d(f(p), g(p)) \le d(f(p), f(z)) + d(f(z), g(p))$$

< 2\varepsilon.

Since ε was arbitrary, f(p) = g(p).

Theorem 36. [Exercise 4.6] Let E be a subset of \mathbb{R} . Define the graph of a function $f: E \to \mathbb{R}$ to be the set $\{(x, f(x)) \mid x \in E\}$. If E is compact, then a function $f: E \to \mathbb{R}$ is continuous if and only if its graph is compact.

Proof. Let G be the graph of f and let $g : E \to G$ be given by $x \mapsto (x, f(x))$. Clearly, g is a bijection by definition. Suppose that f is continuous. Since $x \mapsto x$ is continuous, by Theorem 4.10 we have that g is continuous. By Theorem 4.14, the image of g is compact, which proves the result. Conversely, suppose that the graph G is compact. Let V be a closed set in \mathbb{R} ; we want to show that $f^{-1}(V)$ is closed. Let p be a limit point of $f^{-1}(V)$. By Theorem 3.2, there exists a sequence $\{p_n\}$ in $f^{-1}(V)$ that converges to p. Consider the sequence $\{(p_n, f(p_n))\}$; since G is compact, some subsequence $\{(p_{n_i}, f(p_{n_i}))\}$ converges to some $(p, y) \in G$, and by definition, y = f(p). Now $\{f(p_{n_i})\}$ is a sequence in V, and since V is closed and the sequence converges to f(p), we have $f(p) \in V$. Therefore $p \in f^{-1}(V)$, which shows that $f^{-1}(V)$ is closed.

Theorem 37. [Exercise 4.8] Let E be a bounded set in \mathbb{R} and let $f : E \to \mathbb{R}$ be a uniformly continuous function. Then f is bounded on E. If E is not bounded, then the conclusion does not necessarily hold.

Proof. We can choose M, N so that M < x < N for all $x \in E$. Since f is uniformly continuous, there exists a $\delta > 0$ such that |f(x) - f(y)| < 1 whenever $|x - y| < \delta$. Choose n so that $N - M + \delta > (n + 1)\delta \ge N - M$. For every $x \in E$, there is an integer k with $0 \le k \le n$ such that $|M + k\delta - x| < \delta$. Then $|f(M + k\delta) - f(x)| < 1$ which means $|f(x)| < 1 + |f(M + k\delta)|$. Now take

$$P = \min_{0 \le k \le n} |f(M + k\delta)|$$

where k = 0, 1, ..., n; we have |f(x)| < 1 + P for all $x \in E$ and hence f is bounded on E.

To show that E must be bounded for the conclusion to hold, choose f(x) = x, which is uniformly continuous, and $E = \mathbb{R}$.

Theorem 38. [Exercise 4.9] Let $f : X \to Y$. Then the following statements are equivalent:

- (1) f is uniformly continuous.
- (2) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that diam $f(E) < \varepsilon$ whenever $E \subseteq X$ and diam $E < \delta$.

Proof. Obvious.

Theorem 39. Let X and Y be metric spaces. Let $f : X \to Y$ be a continuous function. If $\{s_n\}$ is a sequence in X that converges to s, then $\{f(s_n)\}$ converges to f(s).

Proof. Let $\varepsilon > 0$ be given. Then there exists a $\delta > 0$ such that $d(f(s), f(x)) < \varepsilon$ whenever $d(s, x) < \delta$. Since $s_n \to s$, there exists a N such that for all $n \ge N$ we

have $d(s, s_n) < \delta$. Then $d(f(s), f(s_n)) < \varepsilon$ whenever $n \ge N$, which completes the proof.

Theorem 40. Let X, Y, Z be metric spaces. Let $f : X \to Y$ be a function with $\lim_{x\to a} f(x) = b$ and let $g: Y \to Z$ be continuous at b. Then $\lim_{x\to a} g(f(x)) = g(b)$.

Proof. Let $\varepsilon > 0$ be given. Choose $\delta > 0$ such that $d_Z(g(x), g(b)) < \varepsilon$ whenever $d_Y(x, b) < \delta$, and choose $\gamma > 0$ such that $d_Y(f(x), b) < \delta$ whenever $0 < d_X(x, a) < \gamma$. Then $d_Z(g(f(x)), g(b)) < \varepsilon$ whenever $0 < d_X(x, a) < \gamma$.

Theorem 41. Let X and Y be metric spaces. Let $f : X \to Y$ be a function with

$$\lim_{x \to a} f(x) = L.$$

If F is any neighborhood of a and $g: E \to F$ is a continuous bijection where $g^{-1}(a)$ is a limit point of E, then

$$\lim_{x \to g^{-1}(a)} f(g(x)) = L.$$

Proof. For every $\varepsilon > 0$, there exists a $\delta > 0$ such that $d(f(x), L) < \varepsilon$ whenever $0 < d(x, a) < \delta$. Since g is continuous on E, there exists a $\gamma > 0$ such that $d(g(x), a) < \delta$ whenever $d(x, g^{-1}(a)) < \gamma$. Then for all x with $0 < d(x, g^{-1}(a)) < \gamma$ we have $0 < d(g(x), a) < \delta$, noting that d(g(x), a) = 0 if and only if $d(x, g^{-1}(a)) = 0$, since g is a bijection. Therefore, $d(f(g(x)), L) < \varepsilon$, which completes the proof.

Theorem 42. [Exercise 4.10] Let X be a compact metric space and let Y be a metric space. If $f: X \to Y$ is a continuous function, then f is also uniformly continuous.

Proof. Suppose that f is not uniformly continuous. Then there exists a $\varepsilon > 0$ such that for every $\delta > 0$ we have some $E \subseteq X$ with diam $E < \delta$ such that diam $f(E) \ge \varepsilon > \gamma$, where $\gamma = \varepsilon/2$. Let $\delta_n = 1/n$; for each n we have points $p_n, q_n \in X$ such that $d_X(p_n, q_n) < \delta_n$ and $d_Y(f(p_n), f(q_n)) > \gamma$. Since X is compact, some subsequence $\{p_{n_i}\}$ converges to a point $p \in X$. By Theorem 39, the sequence $\{f(p_{n_i})\}$ converges to f(p). Similarly we have $q_{n_i} \to p$ and $f(q_{n_i}) \to f(p)$ upon application of Theorem 13 and Theorem 39. Now there exist integers M, N such that $d_Y(f(p), f(p_{n_i})) < \gamma/2$ whenever $n_i \ge M$, and $d_Y(f(p), f(q_{n_i})) < \gamma/2$ whenever $n_i \ge N$. Taking n_i to be an integer with $n_i \ge \max(M, N)$, we find that

$$d_{Y}(f(p_{n_{i}}), f(q_{n_{i}})) \leq d_{Y}(f(p_{n_{i}}), f(p)) + d_{Y}(f(p), f(q_{n_{i}})) < \gamma,$$

which is a contradiction.

Theorem 43. [Exercise 4.11] Let X and Y be metric spaces. If $f : X \to Y$ is a uniformly continuous function, then $\{f(x_n)\}$ is a Cauchy sequence in Y for every Cauchy sequence $\{x_n\}$ in X.

Proof. Let $\{x_n\}$ be a Cauchy sequence in X. Let $\varepsilon > 0$ be given. Since f is uniformly continuous, there exists a $\delta > 0$ such that $d(f(x), f(y)) < \varepsilon$ whenever $d(x, y) < \delta$. Since $\{x_n\}$ is a Cauchy sequence, there exists a N such that $d(x_i, x_j) < \delta$ whenever $i, j \ge N$. Then for all $i, j \ge N$ we have $d(f(x_i), f(x_j)) < \varepsilon$, which completes the proof.

Theorem 44. [Exercise 4.12] Let X, Y, Z be metric spaces. If $f : X \to Y$ and $g : Y \to Z$ are uniformly continuous functions, then $h = g \circ f$ is uniformly continuous.

Proof. Let $\varepsilon > 0$ be given. There exists a $\delta_1 > 0$ such that $d_Z(g(x), g(y)) < \varepsilon$ whenever $d_Y(x, y) < \delta_1$. There also exists a $\delta_2 > 0$ such that $d_Y(f(x), f(y)) < \delta_1$ whenever $d_X(x, y) < \delta_2$. Then for all x, y with $d_X(x, y) < \delta_2$ we have

$$d_Y\left(f\left(x\right), f\left(y\right)\right) < \delta_1$$

and

$$d_Z\left(g\left(f\left(x\right)\right), g\left(f\left(y\right)\right)\right) = d_Z\left(h\left(x\right), h\left(y\right)\right) < \varepsilon.$$

Lemma 45. Let X, Y be metric spaces and let $f : X \to Y$ be a uniformly continuous function. Let $\{x_n\}, \{y_n\}$ be sequences in X that both converge to $x \in X$. If $f(x_n) \to y$ and $f(y_n) \to z$, then y = z.

Proof. Fix $\varepsilon > 0$. Since f is uniformly continuous, there is some $\delta > 0$ such that $d(f(a), f(b)) < \varepsilon/3$ whenever $d(a, b) < \delta$. For some N we have $d(x, x_n) < \delta/2$ and $d(x, y_n) < \delta/2$ whenever $n \ge N$, so that

$$d(x_n, y_n) \le d(x_n, x) + d(x, y_n)$$

< δ

and therefore $d(f(x_n), f(y_n)) < \varepsilon/3$ whenever $n \ge N$. Furthermore, there exist integers N_1, N_2 such that $d(y, f(x_n)) < \varepsilon/3$ whenever $n \ge N_1$ and $d(z, f(y_n)) < \varepsilon/3$ whenever $n \ge N_2$. Setting $n = \max\{N, N_1, N_2\}$, we have

$$d(y,z) \leq d(y, f(x_n)) + d(f(x_n), z)$$

$$\leq d(y, f(x_n)) + d(f(x_n), f(y_n)) + d(f(y_n), z)$$

$$< \varepsilon.$$

Since ε was arbitrary, y = z.

Theorem 46. [Exercise 4.13] Let E be a dense subset of a metric space X, and let $f : E \to \mathbb{R}$ be a uniformly continuous function. Then f has a continuous extension from E to X.

Proof. We will define $g: X \to \mathbb{R}$ as follows. Let $x \in X$. Since E is dense in X, there exists a sequence $\{x_n\}$ in E that converges to x. Then $\{x_n\}$ is a Cauchy sequence, and by Theorem 43, $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} . By Theorem 3.11, there exists some $y \in \mathbb{R}$ such that $f(x_n) \to y$. We may then define g(x) = y in this manner, noting that it is well-defined by Lemma 45. Now we will prove that g is continuous. Let $\varepsilon > 0$ and $x \in X$ be given. Since f is uniformly continuous, there exists a $\delta > 0$ such that $d(f(x), f(x')) < \varepsilon/3$ whenever $d(x, x') < \delta$. As in our construction of g, there exists a sequence $\{x_n\}$ in E that converges to x, while $f(x_n) \to y$ for some $y \in \mathbb{R}$. Then there exists a M such that for every $n \ge M$ we have $d(y, f(x_n)) < \varepsilon/3$. Now let $x' \in X$ with $d(x, x') < \delta$. There exists a sequence $\{x'_n\}$ in E that converges to x'_n , while $f(x'_n) \to y'$ for some $y' \in \mathbb{R}$. Then there exists a N such that for every $n \ge M$ such that for every $n \ge N$ we have $d(y', f(x'_n)) < \varepsilon/3$. Now take $n = \max(M, N)$, and then

$$d(f(x), f(x')) = d(y, y')$$

$$\leq d(y, f(x_n)) + d(f(x_n), f(x'_n)) + d(f(x'_n), y')$$

$$< \varepsilon.$$

This shows that g is a continuous extension of f from E to X. Note that we may replace the range of f with any complete metric space.

Theorem 47. [Exercise 4.14] Let I = [0, 1] be the closed unit interval. If $f : I \to I$ is a continuous function, then f(x) = x for at least one $x \in I$.

Proof. Let $g : [0,1] \to \mathbb{R}$ be defined by g(x) = f(x) - x. If f(0) = 0 or f(1) = 1 then we are done. Therefore, we may assume that f(0) > 0 and f(1) < 1. We have g(0) = f(0) > 0 while g(1) = f(1) - 1 < 0. By the intermediate value theorem, there exists a $x \in (0,1)$ such that g(x) = 0, i.e. f(x) = x.

Lemma 48. If a function $f : \mathbb{R} \to \mathbb{R}$ is not monotonic, then there exist points p_1, p_2, p_3 such that $p_1 < p_2 < p_3$, and either $f(p_1), f(p_3) < f(p_2)$ or $f(p_1), f(p_3) > f(p_2)$.

Proof. If f is not monotonic, then there exist points x_1, y_1, x_2, y_2 such that $x_1 < y_1$, $f(x_1) < f(y_1), x_2 < y_2, f(x_2) > f(y_2)$. We can construct a list of all possible orderings to prove the result.

Theorem 49. [Exercise 4.15] Every continuous open map from \mathbb{R} to \mathbb{R} is monotonic.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous open map. Suppose that f is not monotonic. By Lemma 48, there exist points p_1, p_2, p_3 such that $p_1 < p_2 < p_3$, and either $f(p_1), f(p_3) < f(p_2)$ or $f(p_1), f(p_3) > f(p_2)$. Assume without loss of generality that $f(p_1), f(p_3) < f(p_2)$, and let $M = \sup f([p_1, p_3])$. Then by Theorem 4.16 there exists a point $x \in [p_1, p_3]$ such that f(x) = M. Let $V = (p_1, p_3)$; then $x \in V$ since $f(p_1), f(p_3) < f(p_2) \le M$. Since f is an open map, f(V) is open, and there exists a neighborhood N of f(x) with radius r such that $N \subseteq f(V)$. Then $f(x) + r/2 \in f(V)$, which means that f(x') > M for some $x' \in V$. This is a contradiction, so f must be monotonic. \Box

Theorem 50. [Exercise 4.17] The set of points at which a function $f : (a, b) \to \mathbb{R}$ has a simple discontinuity is at most countable.

Proof. Let E the set of all $x \in (a, b)$ such that f(x-) < f(x+). For each $x \in E$, associate with x a triple (p, q, r):

- (1) Choose $p \in \mathbb{Q}$ so that f(x-) .
- (2) There exists a $\delta > 0$ such that $|f(t) f(x-)| whenever <math>x \delta < t < x$. Choose $q \in \mathbb{Q}$ so that $x \delta < q < x$. Then whenever a < q < t < x we have f(t) < p.
- (3) There exists a $\delta > 0$ such that |f(x+) f(t)| < f(x+) p whenever $x < t < x + \delta$. Choose $r \in \mathbb{Q}$ so that $x < r < x + \delta$. Then whenever x < t < r < b we have f(t) > p.

Now we must prove that each triple is associated with at most one $x \in E$. Let $x, y \in E$ such that x, y are both associated with the triple (p, q, r). We obtain four inequalities:

f(t)<math display="block">f(t) > p whenever x < t < r < b, f(t)<math display="block">f(t) > p whenever y < t < r < b.

Suppose that x < y. We can choose u with x < u < y. Since x < u < r, we have f(u) > p, and since q < u < y, we have f(u) < p, which is a contradiction. Similarly, we obtain a contradiction if x > y. Therefore x = y. Let F be the set of all $x \in (a, b)$ such that f(x-) > f(x+); we can again associate with $x \in F$ a triple (p, q, r). For the last kind of simple discontinuity, let G be the set of all $x \in (a, b)$ such that f(x-) = f(x+) but $f(x) \neq f(x-), f(x+)$. For each $x \in G$, associate with x a tuple (q, r) where q, r are defined in a similar way to the triples (p, q, r) associated with E. The sets E, F, G are all countable, so the result follows.

Theorem 51. [Exercise 4.19] Let $f : \mathbb{R} \to \mathbb{R}$ be a function with the following property: if f(a) < c < f(b), then f(x) = c for some $x \in (a, b)$. Also, for every $r \in \mathbb{Q}$, the set of all x with f(x) = r is closed. Then f is continuous.

Proof. Suppose that f is not continuous. Then there exist $\varepsilon > 0$ and $x \in \mathbb{R}$ such that for all $\delta > 0$ we have $|x - y| < \delta$ and $|f(x) - f(y)| \ge \varepsilon$ for some y. Put $\delta_n = 1/n$ to form a sequence $x_n \to x$ while $|f(x) - f(x_n)| \ge \varepsilon$ for all n. Either x_n has a infinite number of points with $f(x) < f(x_n)$, or an infinite number of points with $f(x_n) < f(x)$. Assume without loss of generality that the former holds, so that there exists a subsequence $x_{n_i} \to x$ with $f(x) + \varepsilon \leq f(x_n)$ for all n. Let r be some rational number with $f(x) < r < f(x) + \varepsilon$. For all n we have $f(x) < r < f(x_n)$; by the given property of f, there exists a $t_n \in (x, x_n)$ with $f(t_n) = r$, and with the sequence t_n converging to x since $x_n \to x$. Let E be the set of all a with f(a) = r. Since $t_n \to x$ and $f(t_n) = r$, we have that x is a limit point of E. But f(x) < r, so E is not closed. This is a contradiction, and therefore f must be continuous.

Theorem 52. [Exercise 4.20] If E is a nonempty subset of a metric space X, define the distance from $x \in X$ to E by

$$p_E(x) = \inf_{z \in E} d(x, z).$$

Then:

(1) $p_E(x) = 0$ if and only if $x \in \overline{E}$. (2) p_E is a uniformly continuous function on X.

Proof. Suppose that $p_E(x) = 0$ and $x \notin E$. Let N be a neighborhood of x with radius r; by definition of the infimum, N contains a point $z \in E$ with d(x, z) < r (and $z \neq x$). Hence x is a limit point of E. Conversely, suppose that $p_E(x) = L$ with L > 0. Clearly $x \notin E$ since d(x, x) = 0. Also, x is not a limit point of E since the neighborhood $N_L(x)$ contains no points in E. Therefore $x \notin \overline{E}$.

Fix $x, y \in X$. Then for all $z \in E$ we have

$$p_E(x) \le d(x, z) \le d(x, y) + d(y, z).$$

Therefore $d(y, z) \ge p_E(x) - d(x, y)$ for all z, which means that $p_E(y) \ge p_E(x) - d(x, y)$. Similarly, $p_E(x) \ge p_E(y) - d(x, y)$, and thus

$$\left|p_{E}\left(x\right) - p_{E}\left(y\right)\right| \leq d\left(x, y\right).$$

Whenever $d(x, y) < \varepsilon$ we have $|p_E(x) - p_E(y)| < \varepsilon$, which shows that p_E is uniformly continuous.

Theorem 53. [Exercise 4.21] Let K and F be disjoint sets in a metric space X, with K compact and F closed. Then there exists a $\delta > 0$ such that $d(p,q) > \delta$ for all $p \in K$ and $q \in F$.

Proof. Consider the map $p_F: K \to \mathbb{R}$ defined in Theorem 52. Suppose that $p_F(x) = 0$ for some $x \in K$. Then by Theorem 52, $x \in \overline{F} = F$, which is a contradiction. Therefore $p_F(x) > 0$ for all $x \in K$. Let $D = p_F(K)$; since K is compact, D is compact, and additionally D is closed by the Heine-Borel theorem. Since $0 \in D^c$ and D^c is open, there exists a neighborhood N of 0 with radius r > 0 such that $N \subseteq D^c$. Therefore, $p_F(x) \ge r$ for all $x \in K$, and the result follows.

22

Theorem 54. [Exercise 4.23] If $f : (a, b) \to \mathbb{R}$ is a convex function and a < s < t < u < b, then

(*)
$$\frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(s)}{u - s} \le \frac{f(u) - f(t)}{u - t}$$

and f is continuous. Additionally, every increasing convex function of a convex function is convex.

Proof. We have

$$t = \frac{t-s}{u-s}u + \left(1 - \frac{t-s}{u-s}\right)s$$
$$= \frac{u-t}{u-s}s + \left(1 - \frac{u-t}{u-s}\right)u.$$

Then

$$f(t) \le \frac{t-s}{u-s} f(u) + \left(1 - \frac{t-s}{u-s}\right) f(s)$$
$$\frac{f(t) - f(s)}{t-s} \le \frac{f(u) - f(s)}{u-s}$$

and

$$f(t) \le \frac{u-t}{u-s} f(s) + \left(1 - \frac{u-t}{u-s}\right) f(u)$$
$$\frac{f(u) - f(s)}{u-s} \le \frac{f(u) - f(t)}{u-t}.$$

Let $x \in (a, b)$ and choose δ so that $[x - \delta, x + \delta] \in (a, b)$. Let $y \in (x - \delta, x + \delta) \setminus \{x\}$. We want to show that the following inequality holds:

$$\frac{f(x) - f(x - \delta)}{\delta} \le \frac{f(x) - f(y)}{x - y} \le \frac{f(x + \delta) - f(x)}{\delta}.$$

If y < x, then applying (*) on $x - \delta < y < x$ and $y < x < x + \delta$ produces the result. Similarly, if y > x then applying (*) on $x - \delta < x < y$ and $x < y < x + \delta$ produces the result. Then for all $y \in (x - \delta, x + \delta)$, $|f(x) - f(y)| \le C |x - y|$ for some positive constant C. This proves that f is continuous.

Let $g: (c, d) \to \mathbb{R}$ be an increasing convex function where the range of f is a subset of (c, d). Then for all $x, y \in (a, b)$ and $\lambda \in (0, 1)$,

$$f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y)$$

$$g(f(\lambda x + (1 - \lambda) y)) \leq g(\lambda f(x) + (1 - \lambda) f(y))$$

$$\leq \lambda g(f(x)) + (1 - \lambda) g(f(y)),$$

which shows that $g \circ f$ is convex.

Definition 55. Let *I* be an interval in \mathbb{R} . A function $f: I \to \mathbb{R}$ is **midpoint convex** if

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$

for all $x, y \in I$. A **binary sequence** is a sequence $\{b_n\}$ where every b_n is either 0 or 1.

Lemma 56. Let $f : [0,1] \to \mathbb{R}$ be a midpoint convex function and let $\{b_n\}$ be a binary sequence. Let $\lambda_n = \sum_{k=1}^n b_k 2^{-k}$. Then

$$f(\lambda_n) \le \lambda_n f(1) + (1 - \lambda_n) f(0).$$

Proof. We first use induction on n to prove that

$$f\left(\sum_{k=1}^{n} b_k 2^{-k}\right) \le \sum_{k=1}^{n} f(b_k) 2^{-k} + f(0) 2^{-n}$$

for any binary sequence $\{b_n\}$. If n = 1 and $b_1 \in \{0, 1\}$, then

$$f\left(\frac{b_1}{2}\right) = f\left(\frac{0+b_1}{2}\right) \le \frac{1}{2}f(b_1) + \frac{1}{2}f(0)$$

since f is midpoint convex. Otherwise, assuming the statement for n-1, we have for any binary sequence $\{b_n\}$,

$$f\left(\sum_{k=1}^{n} b_{k} 2^{-k}\right) = f\left(\frac{1}{2}\left[b_{1} + \sum_{k=2}^{n} b_{k} 2^{-k+1}\right]\right)$$
$$\leq \frac{1}{2}f(b_{1}) + \frac{1}{2}f\left(\sum_{k=2}^{n} b_{k} 2^{-k+1}\right)$$
$$\leq \frac{1}{2}f(b_{1}) + \frac{1}{2}\sum_{k=2}^{n} f(b_{k}) 2^{-k+1} + f(0) 2^{-n}$$
$$= \sum_{k=1}^{n} f(b_{k}) 2^{-k} + f(0) 2^{-n},$$

which proves the statement for all n. We now compute

$$1 - \lambda_n = \sum_{k=1}^{\infty} 2^{-k} - \sum_{k=1}^{n} b_k 2^{-k}$$
$$= \sum_{k=1}^{n} (1 - b_k) 2^{-k} + \sum_{k=n+1}^{\infty} 2^{-k}$$
$$= \sum_{k=1}^{n} (1 - b_k) 2^{-k} + 2^{-n}$$

so that

$$\lambda_n f(1) + (1 - \lambda_n) f(0) = \sum_{k=1}^n f(1) b_k 2^{-k} + \sum_{k=1}^n f(0) (1 - b_k) 2^{-k} + f(0) 2^{-n}$$
$$= \sum_{k=1}^n f(b_k) 2^{-k} + f(0) 2^{-n}$$

since b_k is always 0 or 1, and $f(1)b_k + f(0)(1-b_k)$ is always equal to $f(b_k)$. This proves the result.

Theorem 57. [Exercise 4.24] Let $f : (a,b) \to \mathbb{R}$ be a continuous, midpoint convex function. Then f is convex.

Proof. We first prove a smaller result for any continuous, midpoint convex function $g : [0,1] \to \mathbb{R}$. Let $\lambda \in (0,1)$ and let $\{b_n\}$ be a binary expansion of λ so that if $\lambda_n = \sum_{k=1}^n b_k 2^{-k}$, then $\lambda_n \to \lambda$. By Lemma 56, we have $g(\lambda_n) \leq \lambda_n g(1) + (1 - \lambda_n)g(0)$, and by Theorem 39, $g(\lambda_n) \to g(\lambda)$. Therefore by Theorem 10,

(*)
$$g(\lambda) \le \lambda g(1) + (1 - \lambda)g(0).$$

For the general case, let $x, y \in (a, b)$ and let $\lambda \in (0, 1)$. If x = y, then we are done. Otherwise, assume without loss of generality that x < y. Define $g : [0, 1] \to \mathbb{R}$ by $g(\lambda) = f(\lambda y + (1 - \lambda)x)$. For any $\lambda_1, \lambda_2 \in [0, 1]$, we have

$$g\left(\frac{\lambda_1 + \lambda_2}{2}\right) = f\left(x + \frac{\lambda_1 + \lambda_2}{2}(y - x)\right)$$
$$= f\left(\frac{[\lambda_1 y + (1 - \lambda_2)x] + [\lambda_2 y + (1 - \lambda_2)x]}{2}\right)$$
$$\leq \frac{g(\lambda_1) + g(\lambda_2)}{2},$$

which shows that g is midpoint convex. By (*),

$$g(\lambda) \le \lambda g(1) + (1 - \lambda)g(0)$$
$$f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x)$$

for all $\lambda \in (0, 1)$. This proves that f is convex.

Theorem 58. [Exercise 4.26] Let X, Y, Z be metric spaces with Y compact. Let $f : X \to Y$ such that $f(X) \subseteq Y$, and let $g : Y \to Z$ be a continuous, injective function. Let $h : X \to Z$ be defined by h(x) = g(f(x)). Then:

- (1) If h is uniformly continuous, then f is uniformly continuous.
- (2) If h is continuous, then f is continuous.

Proof. Suppose that h is uniformly continuous. Since g is continuous and Y is compact, g(Y) is compact. Since g is injective, $f(x) = g^{-1}(h(x))$, and $g^{-1} : g(Y) \to Y$ is continuous by Theorem 4.17. But g(Y) is compact, so by Theorem 4.19, g^{-1} is uniformly continuous. Applying Theorem 44 proves that f is uniformly continuous.

Suppose that h is continuous. Again, $f = g^{-1} \circ h$, and g^{-1} is continuous by Theorem 4.17. Applying Theorem 4.7 proves that f is continuous.

CHAPTER 5. DIFFERENTIATION

Lemma 59. Let I be an interval and let $f : I \to \mathbb{R}$ be a function differentiable at x. Then there exists a function $\phi : I \to \mathbb{R}$ such that

$$f(t) - f(x) = (t - x)[f'(x) + \phi(t)]$$

for all $t \in I$ and

$$\lim_{t \to x} \phi(t) = \phi(0) = 0$$

Proof. Define

$$\phi(t) = \begin{cases} 0 & \text{if } t = x, \\ \frac{f(t) - f(x)}{t - x} - f'(x) & \text{otherwise.} \end{cases}$$

This function clearly satisfies the desired properties.

Theorem 60. Let I_1, I_2 be intervals. Let $f : I_1 \to \mathbb{R}$ be a continuous function and let $g : I_2 \to \mathbb{R}$ be a function where I_2 contains the range of f. Define $h : I_1 \to \mathbb{R}$ by h(x) = g(f(x)). If f is differentiable at some point $x \in I_1$ and g is differentiable at f(x), then h'(x) = g'(f(x))f'(x).

Proof. Let y = f(x) for convenience. By Lemma 59, there exist functions ϕ_1, ϕ_2 with

$$\lim_{t \to x} \phi_1(t) = \lim_{s \to y} \phi_2(s) = 0$$

such that

$$f(t) - f(x) = (t - x)[f'(x) + \phi_1(t)],$$

$$g(s) - g(y) = (s - y)[g'(y) + \phi_2(s)],$$

whenever $t \in I_1$ and $s \in I_2$. In particular, by setting s = f(t) we have for all $t \in I_1$,

$$h(t) - h(x) = g(f(t)) - g(f(x))$$

= $(f(t) - f(x))[g'(f(x)) + \phi_2(f(t))]$
= $(t - x)[f'(x) + \phi_1(t)][g'(f(x)) + \phi_2(f(t))],$

so that

(*)
$$\frac{h(t) - h(x)}{t - x} = [f'(x) + \phi_1(t)][g'(f(x)) + \phi_2(f(t))]$$

if $t \neq x$. By Theorem 40,

$$\lim_{t \to x} \phi_2(f(t)) = \phi_2(f(x)) = 0$$

since f is continuous at x and ϕ_2 is continuous at f(x), so taking $t \to x$ in (*) completes the proof.

Theorem 61. [Exercise 5.1] Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Then f is constant.

Proof. The condition on f is that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le |x - y|$$

for all $x, y \in \mathbb{R}$. Then f'(x) = 0 for all x, and by the mean value theorem, f is constant.

Theorem 62. [Exercise 5.2] Let $f : (a, b) \to \mathbb{R}$ with f'(x) > 0 for all $x \in (a, b)$. Then:

- (1) f is strictly increasing in (a, b), and
- (2) If g is the inverse function of f, then g is differentiable and

$$g'(f(x)) = \frac{1}{f'(x)}$$

for all $x \in (a, b)$.

Proof. Let $x, y \in (a, b)$ with x < y. By the mean value theorem, there exists a $c \in (x, y)$ such that f(y) - f(x) = (y - x)f'(c) > 0, and therefore f(x) < f(y). This shows that f is strictly increasing in (a, b). Let $x \in (a, b)$; we want to show that g is differentiable at f(x). Since f is differentiable at x, we have

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = f'(x).$$

By Theorem 4.4, since f'(x) > 0,

$$\lim_{t \to x} \frac{t-x}{f(t) - f(x)} = \frac{1}{f'(x)}$$

By Theorem 41 applied with g, we have

$$\lim_{t \to f(x)} \frac{g(t) - g(f(x))}{t - f(x)} = \frac{1}{f'(x)}$$

and therefore g'(f(x)) = 1/f'(x).

Theorem 63. [Exercise 5.3] Let $g : \mathbb{R} \to \mathbb{R}$ with a bounded derivative $|g'| \leq M$. Fix $\varepsilon > 0$ and let $f(x) = x + \varepsilon g(x)$. Then f is injective if ε is small enough.

Proof. Take $\varepsilon < 1/M$. Let $x, y \in \mathbb{R}$ such that f(x) = f(y), i.e. $x + \varepsilon g(x) = y + \varepsilon g(y)$, so that

$$\left|\frac{g(x) - g(y)}{x - y}\right| = \frac{1}{\varepsilon}.$$

Suppose that $x \neq y$; then by the mean value theorem, there exists a $z \in (x, y)$ such that

$$|g'(z)| = \left|\frac{g(x) - g(y)}{x - y}\right| = \frac{1}{\varepsilon} \le M.$$

This is a contradiction since $1/\varepsilon > M$, so x = y whenever f(x) = f(y).

Theorem 64. [Exercise 5.4] If C_0, \ldots, C_n are real constants such that

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

then the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Let

$$f(x) = C_0 x + \frac{C_1}{2} x + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1}$$

so that f(0) = f(1) = 0. By the mean value theorem, there exists a $x \in (0, 1)$ such that

$$f'(x) = C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0.$$

Theorem 65. [Exercise 5.5] Let f be defined and differentiable for every x > 0, with $f'(x) \to 0$ as $x \to +\infty$. Let g(x) = f(x+1) - f(x). Then $g(x) \to 0$ as $x \to +\infty$.

Proof. For every $\varepsilon > 0$, there exists a M > 0 such that $|f'(x)| < \varepsilon$ whenever x > M. Then for all x > M, applying the mean value theorem to f gives a $c \in (x, x + 1)$ such that f(x + 1) - f(x) = f'(c). Since c > M, we have $|f(x + 1) - f(x)| = |f'(c)| < \varepsilon$, which proves that $g(x) \to 0$ as $x \to +\infty$.

Theorem 66. [Exercise 5.6] Let f be a real function. Suppose that

(1) f is continuous for $x \ge 0$, (2) f'(x) exists for x > 0, (3) f(0) = 0, (4) f' is monotonically increasing.

Let

$$g(x) = \frac{f(x)}{x}$$

be defined for all x > 0. Then g is monotonically increasing.

Proof. The derivative of g is given by

$$g'(x) = \frac{xf'(x) - f(x)}{x^2},$$

so we want to prove that xf'(x) - f(x) > 0 for all x > 0. For all x > 0, by the mean value theorem, there exists a $c \in (0, x)$ such that

$$\frac{f(x)}{x} = f'(c) < f'(x)$$

since c < x and f' is monotonically increasing. This proves the result.

Theorem 67. [Exercise 5.7] Suppose that f'(x) and g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Then

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$$

Proof. Since f'(x) and g'(x) exist, we have

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{f(t)}{t - x} = f'(x),$$
$$\lim_{t \to x} \frac{g(t) - g(x)}{t - x} = \lim_{t \to x} \frac{g(t)}{t - x} = g'(x).$$

Since $g'(x) \neq 0$, by Theorem 4.4 the result follows.

Theorem 68. [Exercise 5.8] Suppose that f' is continuous on [a, b] and $\varepsilon > 0$. Then there exists a $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \varepsilon$$

whenever $0 < |t - x| < \delta$ and $t, x \in [a, b]$.

Proof. By Theorem 4.19, f' is uniformly continuous since [a, b] is compact. There exists a $\delta > 0$ such that $|f'(t) - f'(x)| < \varepsilon$ whenever $|t - x| < \delta$. Then for all $t, x \in [a, b]$ with $0 < |t - x| < \delta$, by the mean value theorem, there exists a $u \in (t, x)$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(u)\right| = 0,$$

and

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| \le \left|\frac{f(t) - f(x)}{t - x} - f'(u)\right| + |f'(u) - f'(c)| < \varepsilon.$$

Theorem 69. [Exercise 5.9] Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f'(x) exists for all $x \neq 0$ and $f'(x) \to 3$ as $x \to 0$. Then f'(0) exists.

Proof. For every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f'(x) - 3| < \varepsilon$ whenever $0 < |x| < \delta$. For all x with $0 < |x| < \delta$, by the mean value theorem, there exists a $c \in (0, x)$ such that

$$\frac{f(x) - f(0)}{x} = f'(c)$$
$$\left| \frac{f(x) - f(0)}{x} - 3 \right| = |f'(c) - 3| < \varepsilon.$$

Theorem 70. [Exercise 5.11] Suppose that f is defined in a neighborhood of x, and suppose that f''(x) exists. Then

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Proof. Since f''(x) exists, we have

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{f'(x) - f'(x-h)}{h}$$

where the second limit is obtained by applying Theorem 41 with the bijection $h \mapsto -h$. Adding the two limits gives

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}.$$

As $h \to 0$ we have $f(x+h) + f(x-h) - 2f(x) \to 0$ and $h^2 \to 0$, so by Theorem 5.13,

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$
$$= f''(x).$$

Theorem 71. [Exercise 5.14] Let $f : (a,b) \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if f' is monotonically increasing. If f''(x) exists for all $x \in (a,b)$, then f is convex if and only if $f''(x) \ge 0$ for all $x \in (a,b)$.

Proof. Suppose that f is convex. Let $x, y \in (a, b)$ with x < y. Since f is convex, every $t \in (x, y)$ has

$$\frac{f(t) - f(x)}{t - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(t)}{y - t}.$$

Then

$$\lim_{t \to x+} \frac{f(t) - f(x)}{t - x} \le \frac{f(y) - f(x)}{y - x}$$
$$\frac{f(y) - f(x)}{y - x} \le \lim_{t \to y-} \frac{f(y) - f(t)}{y - t},$$

and since f'(x), f'(y) both exist, $f'(x) \leq f'(y)$. Conversely, suppose that f' is monotonically increasing. Let $x, y \in (a, b)$ with x < y and let $\lambda \in (0, 1)$. Let $t = (1 - \lambda)x + \lambda y$.

By the mean value theorem,

$$\frac{f(t) - f(x)}{t - x} = f'(t_1) \frac{f(y) - f(t)}{y - t} = f'(t_2)$$

for some $t_1 \in (x, t)$ and $t_2 \in (t, y)$. Since $t_1 < t_2$,

$$\frac{f(t) - f(x)}{t - x} \le \frac{f(y) - f(t)}{y - t}$$
$$(1 - \lambda)(y - x)(f(t) - f(x)) \le \lambda(y - x)(f(y) - f(t))$$
$$f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y),$$

which shows that f is convex. If f'' is defined on (a, b), then f' is monotonically increasing if and only if $f''(x) \ge 0$ for all $x \in (a, b)$.

Theorem 72. [Exercise 5.15] Let $a \in \mathbb{R}$ and suppose that $f : (a, \infty) \to \mathbb{R}$ is twicedifferentiable. Suppose that M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)| respectively on (a, ∞) . Then $M_1^2 \leq 4M_0M_2$.

Proof. Let $x \in (a, \infty)$. For any h > 0, by Theorem 5.15, there exists a point $\xi \in (x, x + 2h)$ such that

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2 f''(\xi)$$
$$f'(x) = \frac{1}{2h} \left[f(x+2h) - f(x) \right] - hf''(\xi).$$

Then

$$|f'(x)| \le \left| \frac{1}{2h} \left[f(x+2h) - f(x) \right] - hf''(\xi) \right|$$

$$\le \frac{|f(x+2h)| + |f(x)|}{2h} + h |f''(\xi)|$$

$$\le hM_2 + \frac{M_0}{h}$$

so that $M_1 \leq hM_2 + M_0/h$ since M_1 is the least upper bound of |f'(x)|. Setting $h = M_1/(2M_2)$ gives $M_1^2 \leq 4M_0M_2$.

Theorem 73. [Exercise 5.16] Suppose that $f : (0, \infty) \to \mathbb{R}$ is twice-differentiable, f'' is bounded on $(0, \infty)$, and $f(x) \to 0$ as $x \to \infty$. Then $f'(x) \to 0$ as $x \to \infty$.

Proof. Choose M such that $|f''(x)| \leq M$ for all $x \in (0, \infty)$. Let $\varepsilon > 0$ be given. There exists a A such that $|f(x)| < \varepsilon^2/(16M)$ for all $x \in (A, \infty)$, and by Theorem 72 we have $|f'(x)| \leq \varepsilon/2 < \varepsilon$ for all $x \in (A, \infty)$. This shows that $f'(x) \to 0$ as $x \to \infty$.

Theorem 74. [Exercise 5.17] Suppose that $f : [-1,1] \to \mathbb{R}$ is a three times differentiable function such that

$$f(-1) = 0,$$
 $f(0) = 0,$ $f(1) = 1,$ $f'(0) = 0.$

Then $f^{(3)}(x) \ge 3$ for some $x \in (-1, 1)$.

Proof. By Theorem 5.15, there exist points $s \in (0, 1)$ and $t \in (-1, 0)$ such that

$$f(1) = f(0) + f'(0) + \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6}$$

$$(*) \qquad 1 = \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6},$$

$$f(-1) = f(0) - f'(0) + \frac{f''(0)}{2} - \frac{f^{(3)}(t)}{6}$$

$$(**) \qquad 0 = \frac{f''(0)}{2} - \frac{f^{(3)}(t)}{6}.$$

Subtracting (**) from (*) gives $f^{(3)}(s) + f^{(3)}(t) = 6$. If $f^{(3)}(s) \ge 3$ then we are done; otherwise, $f^{(3)}(s) = 6 - f^{(3)}(t) < 3$, so $f^{(3)}(t) > 3$.

Theorem 75. [Exercise 5.18] Let n be a positive integer. Suppose that for $f : [a, b] \rightarrow \mathbb{R}$, the value $f^{(n-1)}(t)$ exists for every $t \in [a, b]$. Let α , β , and P be as in Theorem 5.15. Define $Q(t) = (f(t) - f(\beta)) / (t - \beta)$ for all $t \in [a, b]$ and $t \neq \beta$. Then

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

Proof. We want to prove that

$$\frac{Q^{(n-1)}(t)}{(n-1)!}(\beta-t)^n = f(\beta) - \sum_{k=0}^{n-1} \frac{f^{(k)}(t)}{k!}(\beta-t)^k$$

for all $n \ge 1$. The case n = 1 is equivalent to the definition of Q. Assuming the statement for n and differentiating the above expression, we have

$$\frac{Q^{(n)}(t)}{(n-1)!}(\beta-t)^n - \frac{Q^{(n-1)}(t)}{(n-1)!}n(\beta-t)^{n-1} = -\frac{f^{(n)}(t)}{(n-1)!}(\beta-t)^{n-1}$$
$$\frac{Q^{(n)}(t)}{(n-1)!}(\beta-t)^{n+1} = \frac{Q^{(n-1)}(t)}{(n-1)!}n(\beta-t)^n - \frac{f^{(n)}(t)}{(n-1)!}(\beta-t)^n,$$

where in the first line, most of the terms on the right vanish. Applying the induction hypothesis gives

$$\frac{Q^{(n)}(t)}{(n-1)!}(\beta-t)^{n+1} = nf(\beta) - n\sum_{k=0}^{n-1} \frac{f^{(k)}(t)}{k!}(\beta-t)^k - \frac{f^{(n)}(t)}{(n-1)!}(\beta-t)^n$$
$$\frac{Q^{(n)}(t)}{n!}(\beta-t)^{n+1} = f(\beta) - \sum_{k=0}^n \frac{f^{(k)}(t)}{k!}(\beta-t)^k,$$

which proves the statement for all n. Setting $t = \alpha$ produces the desired result.

Theorem 76. [Exercise 5.22(a)] Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function with $f'(t) \neq 1$ for all $t \in \mathbb{R}$. Then f has at most one fixed point.

Proof. Suppose that f has two fixed points, x = f(x) and y = f(y), with $x \neq y$. By the mean value theorem, there exists a $c \in (x, y)$ such that

$$\frac{f(y) - f(x)}{y - x} = 1 = f'(c),$$

which is a contradiction.

Theorem 77. [Exercise 5.22(b)] Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(t) = t + (1+e^t)^{-1}$. Then f has no fixed point, but $f'(t) \in (0, 1)$ for all $t \in \mathbb{R}$.

Proof. To show that f has no fixed point, note that $(1+e^t)^{-1} \neq 0$ for all $t \in \mathbb{R}$, so that $f(t) = t + (1+e^t)^{-1} \neq t$ for all $t \in \mathbb{R}$. Also,

$$f'(t) = 1 - \frac{e^t}{(1+e^t)^2}$$
$$= 1 - \frac{1}{1+e^t} + \frac{1}{(1+e^t)^2}.$$

From the first line, f'(t) < 1 for all $t \in \mathbb{R}$, and from the second line, f'(t) > 0 for all $t \in \mathbb{R}$.

Theorem 78. [Exercise 5.22(c)] Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. If there exists a constant A < 1 such that $|f'(t)| \leq A$ for all $t \in \mathbb{R}$, then f has a fixed point $x = \lim_{n \to \infty} x_n$ where $x_0 \in \mathbb{R}$ is arbitrary and $x_{n+1} = f(x_n)$ for $n \geq 0$.

Proof. The case A = 0 is trivial, so we may assume that A > 0. By the mean value theorem, $|f(x) - f(y)| \leq A |x - y|$ for all $x, y \in \mathbb{R}$. In particular, $|x_{i+1} - x_{j+1}| \leq A |x_i - x_j|$ for all $i, j \geq 0$, and $|x_m - x_{m-1}| \leq A^{m-1} |x_1 - x_0|$ for all $m \geq 1$. We now prove that for all $n \geq 1$,

$$|x_{m+n} - x_m| \le \frac{A(1-A^n)}{1-A} |x_m - x_{m-1}|.$$

The case n = 1 is clear. Assuming the statement for n - 1, we have

$$|x_{m+n} - x_m| \le |x_{m+n-1} - x_m| + |x_{m+n} - x_{m+n-1}|$$

$$\le \frac{A(1 - A^{n-1})}{1 - A} |x_m - x_{m-1}| + A^n |x_m - x_{m-1}|$$

$$= \frac{A(1 - A^n)}{1 - A} |x_m - x_{m-1}|,$$

which proves the statement for all $n \ge 1$. Furthermore,

$$|x_{m+n} - x_m| < \frac{A}{1-A} |x_m - x_{m-1}|$$

for all $n \ge 1$. Let $\varepsilon > 0$ be given. Recall that $|x_m - x_{m-1}| \le A^{m-1} |x_1 - x_0|$ for all $m \ge 1$ and that A < 1; there exists a N such that $|x_k - x_{k-1}| \le \varepsilon(1 - A)/A$ for all $k \ge N$. Let $m, n \ge N$ and assume without loss of generality that m < n. Then

$$\begin{aligned} x_n - x_m &| = \left| x_{m+(n-m)} - x_m \right| \\ &< \frac{A}{1-A} \left| x_m - x_{m-1} \right| \\ &< \varepsilon, \end{aligned}$$

which shows that $\{x_n\}$ is a Cauchy sequence. By Theorem 3.11, $\{x_n\}$ converges to some value x; we want to show that x is indeed a fixed point of f. Fix $\varepsilon > 0$. We know that $x_n \to x$, $\{x_n\}$ is a Cauchy sequence, and $f(x_n) \to f(x)$ because f is continuous. Then there exists some integer n such that

$$|x - f(x)| \le |x - x_n| + |x_n - f(x_n)| + |f(x_n) - f(x)|$$

= $|x - x_n| + |x_n - x_{n+1}| + |f(x_n) - f(x)|$
< 3ε .

Since ε was arbitrary, x = f(x).

Theorem 79. [Exercise 5.23] The function $f(x) = (x^3 + 1)/3$ has three fixed points α, β, γ , where $-2 < \alpha < -1$, $0 < \beta < 1$, and $1 < \gamma < 2$. For an arbitrarily chosen x_1 , define $\{x_n\}$ by setting $x_{n+1} = f(x_n)$.

- (1) If $x_1 < \alpha$, then $x_n \to -\infty$ as $n \to \infty$.
- (2) If $\alpha < x_1 < \gamma$, then $x_n \to \beta$ as $n \to \infty$.
- (3) If $\gamma < x_1$, then $x_n \to +\infty$ as $n \to \infty$.

Proof. Let $g(x) = x^3 - 3x + 1$; since α, β, γ are fixed points of f, they are roots of g. Suppose that $x_1 < \alpha$. For any c > 0, we can compute

$$g(\alpha - c) = (\alpha^{3} - 3\alpha + 1) - 3\alpha^{2}c + 3\alpha c^{2} - c^{3} + 3c$$

= $c(3(1 - \alpha^{2}) + 3\alpha c - c^{2})$
 $< 3\alpha c^{2} - c^{3}$
 $< -c^{3}$
 $f(\alpha - c) < (\alpha - c) - \frac{c^{3}}{3}.$

Let $d = \alpha - x_1 > 0$; (*) shows that $x_{n+1} < x_n - d/3$ for every $n \ge 1$, and clearly $x_n \to -\infty$ as $n \to \infty$. Now suppose that $\alpha < x_1 < \gamma$. A simple induction argument shows that $\alpha < x_n < \gamma$ for all $n \ge 1$, and by a variation on Theorem 78, $x_n \to \beta$ since $f'(x) = x^2 \in [0, \max(\alpha, \gamma)]$ for all $x \in [\alpha, \gamma]$. Finally, the case for $\gamma < x_1$ is similar to the case $x_1 < \alpha$.

Proposition 80. [Exercise 5.25] Let $f : [a, b] \to \mathbb{R}$ be a twice differentiable function with f(a) < 0, f(b) > 0, $f'(x) \ge \delta > 0$, and $0 < f''(x) \le M$ for all $x \in [a, b]$. Let ξ be the unique point in (a, b) at which $f(\xi) = 0$. [Note: the inequality $0 \le f''(x)$ has been changed to 0 < f''(x).]

Choose $x_1 \in (\xi, b)$ and define $\{x_n\}$ by

(*)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

We now prove by induction that $x_{n+1} \in (\xi, x_n)$ for all n. For all n, applying the mean value theorem gives a value $c \in (\xi, x_n)$ such that

$$\frac{f(x_n) - f(\xi)}{x_n - \xi} = f'(c) < f'(x_n),$$

since $c < x_n$ and f' is strictly increasing. Therefore

$$\frac{f(x_n)}{f'(x_n)} = x_n - x_{n+1} < x_n - \xi$$

and $\xi < x_{n+1}$. Also, $f(x_n) > 0$ for otherwise f(y) = 0 for some $y \in [x_n, b)$ by the intermediate value theorem. Therefore $f(x_n)/f'(x_n) > 0$ and $x_{n+1} < x_n$.

$$f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{1}{2}f''(t_n)(\xi - x_n)^2$$
$$x_n - \frac{f(x_n)}{f'(x_n)} = \xi + \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$
$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2.$$

Consider the statement

$$x_{n+1} - \xi \le \frac{1}{A} \left[A(x_1 - \xi) \right]^{2^n}$$
.

If n = 1, then

$$x_2 - \xi = \frac{f''(t_n)}{2f'(x_1)} (x_1 - \xi)^2$$

$$\leq \frac{M}{2f'(x_1)} (x_1 - \xi)^2$$

$$< A(x_1 - \xi)^2.$$

Otherwise, assuming the statement for n-1, we have

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

< $A(x_n - \xi)^2$
< $\frac{1}{A} [A(x_1 - \xi)]^{2^{n+1}}$,

which proves the statement for all n. Since $0 < x_{n+1} - \xi$ for all n, this shows that $x_n \to \xi$ as $n \to \infty$. Let g(x) = x - f(x)/f'(x). Since ξ is a root of f, $g(\xi) = \xi$, and $x_n \to \xi$, the process amounts to finding a fixed point of g. For x near ξ ,

$$g'(x) = 1 - \frac{f'(x)^2 - f''(x)f(x)}{f'(x)^2}$$

= $\frac{f(x)f''(x)}{f'(x)^2}$
 $\approx 0.$

Theorem 81. [Exercise 5.26] Suppose that $f : [a, b] \to \mathbb{R}$ is a differentiable function with f(a) = 0. Let A be a real number such that $|f'(x)| \le A |f(x)|$ for all $x \in [a, b]$. Then f = 0.

Proof. Let $x_0 \in [a, b]$, $M_0 = \sup_{a \le x \le x_0} |f(x)|$, and $M_1 = \sup_{a \le x \le x_0} |f'(x)|$. By the mean value theorem, there exists a point $c \in (a, x_0)$ such that

$$\frac{f(x_0)}{x_0 - a} = f'(c)$$

$$|f(x_0)| \le M_1(x_0 - a) \le A(x_0 - a)M_0.$$

Suppose that $x_0 > a$ and let $x \in (a, x_0)$. By the mean value theorem, there exists a point $c \in (a, x)$ such that

$$\frac{f(x)}{x-a} = f'(c) |f(x)| \le M_1(x-a) \le M_1(x_0-a) \le A(x_0-a)M_0.$$

Since f(a) = 0, we have $|f(x)| \leq M_1(x_0 - a) \leq A(x_0 - a)M_0$ for all $x \in [a, b]$. Suppose that $A(x_0 - a) < 1$; then $M_0 = 0$ for otherwise $A(x_0 - a)M_0 < M_0$ is a lower bound of |f(x)| in $[a, x_0]$, which contradicts the definition of M_0 . Therefore, if $x_0 > a$ is small enough, then f(x) = 0 for all $x \in [a, x_0]$. Now divide the interval [a, b] into n closed intervals $[a, p_1], [p_1, p_2], \ldots, [p_n, b]$ where n is the smallest integer with $n(x_0 - a) \geq b - a$, and $p_k = a + k(x_0 - a)$. We have shown that f is zero on $[a, x_0] = [a, p_1]$; since $f(p_1) = 0$, applying the argument on $[p_1, p_2]$ shows that f is zero on $[p_1, p_2]$, and so on.

Theorem 82. [Exercise 5.27] Let R be a rectangle in the plane given by $a \le x \le b$ and $\alpha \le y \le \beta$ for $(x, y) \in R$. Let $\phi : R \to \mathbb{R}$ be a function defined on the rectangle. A solution of the initial-value problem

$$y' = \phi(x, y), \quad y(a) = c \quad \text{where } \alpha \le c \le \beta$$

is by definition a differentiable function $f : [a, b] \to [\alpha, \beta]$ such that f(a) = c and $f'(x) = \phi(x, f(x))$ for all $x \in [a, b]$. Suppose that there is a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A |y_2 - y_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$. Then the problem has at most one solution.

Proof. Let f, g be two solutions of the initial-value problem, and let $h : [a, b] \to \mathbb{R}$ be given by h(x) = f(x) - g(x). Then

$$|h'(x)| = |f'(x) - g'(x)| = |\phi(x, f(x)) - \phi(x, g(x))| \leq A |f(x) - g(x)| = A |h(x)|$$

for all $x \in [a, b]$. Since h(a) = 0, by Theorem 81, h = 0 and f = g.

Theorem 83. [Exercise 6.1] Suppose $\alpha : [a, b] \to \mathbb{R}$ is increasing, $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, ad f(x) = 0 if $x \neq x_0$. Then $f \in \mathcal{R}(\alpha)$ and $\int_a^b f \, d\alpha = 0$.

Proof. By Theorem 6.10, $f \in \mathcal{R}(\alpha)$ since f has only one point of discontinuity. Also, since $L(P, f, \alpha) = 0$ for all partitions P, $\int_a^b f \, d\alpha = 0$.

Theorem 84. [Exercise 6.2] Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function, $f \ge 0$, and $\int_a^b f(x) dx = 0$. Then f = 0.

Proof. Suppose that $f \neq 0$; we can choose $x_0 \in (a, b)$ such that $f(x_0) > 0$, for f cannot be nonzero only at its endpoints due to continuity. Then there exists a $\delta > 0$ such that $|f(x_0) - f(x)| < f(x_0)/2$ whenever $|x_0 - x| < \delta$. In particular, $f(x) > f(x_0)/2$ for all $x \in [x_0 - \gamma, x_0 + \gamma]$, where $\gamma = \min \{\delta/2, x_0 - a, b - x_0\}$. By Theorem 6.12,

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0}-\gamma} f(x) dx + \int_{x_{0}-\gamma}^{x_{0}+\gamma} f(x) dx + \int_{x_{0}+\gamma}^{b} f(x) dx$$
$$\geq \int_{x_{0}-\gamma}^{x_{0}+\gamma} f(x) dx$$
$$\geq \int_{x_{0}-\gamma}^{x_{0}+\gamma} f(x_{0})/2 dx$$
$$> 0,$$

which is a contradiction. Therefore f = 0.

Theorem 85. [Exercise 6.3] Define three functions β_1 , β_2 , β_3 as follows: $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_2(0) = \frac{1}{2}$. Let f be a bounded function on [-1, 1].

(1) $f \in \mathcal{R}(\beta_1)$ if and only if f(0+) = f(0), and then $\int_{-1}^{1} f(x) d\beta_1 = f(0)$. (2) $f \in \mathcal{R}(\beta_2)$ if and only if f(0-) = f(0), and then $\int_{-1}^{1} f(x) d\beta_2 = f(0)$. (3) $f \in \mathcal{R}(\beta_3)$ if and only if f is continuous at 0. (4) If f is continuous at 0 then

$$\int_{-1}^{1} f(x) \, d\beta_1 = \int_{-1}^{1} f(x) \, d\beta_2 = \int_{-1}^{1} f(x) \, d\beta_3 = f(0).$$

Proof. Let $\varepsilon > 0$ be given. There exists a $\delta > 0$ such that $|f(x) - f(0)| < \varepsilon/2$ whenever $0 < x < \delta$. Let $\gamma = \min(1, \delta)/2$ and let $P = \{-1, 0, \gamma, 1\}$ be a partition of [-1, 1]. Then

$$U(P, f, \beta_1) - L(P, f, \beta_1) = \sup_{x \in [0,\gamma]} f(x) - \inf_{x \in [0,\gamma]} f(x)$$

< ε .

so $f \in \mathcal{R}(\beta_1)$. Furthermore,

$$U(P, f, \beta_1) = \sup_{x \in [0,\gamma]} f(x)$$
$$\leq f(0) + \frac{\varepsilon}{2},$$

which shows that $\int_{-1}^{1} f(x) d\beta_1 = f(0)$ since ε was arbitrary. Conversely, suppose that $f \in \mathcal{R}(\beta_1)$. Let $\varepsilon > 0$ be given. There exists a partition P of [-1, 1] such that

$$U(P, f, \beta_1) - L(P, f, \beta_1) = M_i - m_i$$

< ε

for some *i* with $x_{i-1} \leq 0 < x_i$, where $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$ and $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$. Then whenever $0 < t < x_i$ we have $0 \leq f(t) - m_i < \varepsilon$ and $-\varepsilon < m_i - f(0) \leq 0$ so that $|f(t) - f(0)| < \varepsilon$. This shows that f(0+) = f(0). The proof is similar for (2) and (3).

Theorem 86. [Exercise 6.4] If f(x) = 0 for all irrational x and f(x) = 1 for all rational x, then $f \notin \mathcal{R}$ on [a, b] for any a < b.

Proof. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b]. For all x < y there exist both rational and irrational numbers in (x, y), so $M_i = 1$ and $m_i = 0$ for every *i*. Therefore

$$U(P, f) - L(P, f) = \sum_{i=1}^{n} \triangle x_i$$
$$= b - a,$$

and $f \notin \mathcal{R}$ on [a, b].

Remark 87. [Exercise 6.5] Suppose f is a bounded real function on [a, b], and $f^2 \in \mathcal{R}$ on [a, b]. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^3 \in \mathcal{R}$?

Assume that a < b and let f(x) = 1 if $x \in \mathbb{Q}$, f(x) = -1 if $x \notin \mathbb{Q}$. Then $f^2 \in \mathcal{R}$ with $\int_a^b f(x)^2 dx = b - a$, but $f \notin \mathcal{R}$. This disproves the first part of the statement. However, the second statement is true by Theorem 6.11, since $x \mapsto x^{1/3}$ is continuous on any interval in \mathbb{R} .

Theorem 88. [Exercise 6.7] Let $f : (0,1] \to \mathbb{R}$ and suppose that $f \in \mathcal{R}$ on [c,1] for every c > 0. Define

$$\int_{0}^{1} f(x) \, dx = \lim_{c \to 0} \int_{c}^{1} f(x) \, dx$$

if this limit exists (and is finite).

- (1) If $f \in \mathcal{R}$ on [0,1], then this definition of the integral agrees with the old one.
- (2) There exists a function f such that the above limit exists, although it fails to exist with |f| in place of f.

Proof. If $f \in \mathcal{R}$ on [0,1], then by Theorem 6.20, $F(c) = \int_c^1 f(x) dx$ is continuous on [0,1]. Therefore $\lim_{c\to 0} F(c) = \int_0^1 f(x) dx$.

Theorem 89. [Exercise 6.8] Suppose that $f \in \mathcal{R}$ on [a, b] for every b > a where a is fixed. Define

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

if this limit exists (and is finite). Assume that $f(x) \ge 0$ and that f decreases monotonically on $[1, \infty)$. Then $\int_1^\infty f(x) \, dx$ converges if and only if $\sum_{n=1}^\infty f(n)$ converges.

Proof. Suppose that $\int_1^{\infty} f(x) dx$ converges to L. For every $\varepsilon > 0$, there exists a $M \ge 1$ such that $\left| \int_1^b f(x) dx - L \right| < \varepsilon/2$ whenever $b \ge M$. Then for all $n \ge m \ge M + 1$, we have

$$\int_{m-1}^{n} f(x) \, dx \le \int_{1}^{n} f(x) \, dx - L + L - \int_{1}^{m-1} f(x) \, dx$$

< \varepsilon.

But since f decreases monotonically on $[1, \infty)$,

$$0 \le \sum_{k=m}^{n} f(k) \le \sum_{k=m}^{n} \int_{k-1}^{k} f(x) \, dx$$
$$= \int_{m-1}^{n} f(x) \, dx$$
$$< \varepsilon,$$

which shows that $\sum_{n=1}^{\infty} f(n)$ converges. Conversely, suppose that $\sum_{n=1}^{\infty} f(n)$ converges; we first show that the sequence $\left\{\int_{1}^{i} f(x) dx\right\}$ converges. Let $\varepsilon > 0$. There exists a

 $M\geq 1$ such that for all $n\geq m\geq M$ we have $0\leq \sum_{k=m}^n f(k)<\varepsilon.$ Then for all $m,n\geq M,$ assume $m\leq n$ so that

$$0 \leq \int_{1}^{n} f(x) dx - \int_{1}^{m} f(x) dx = \int_{m}^{n} f(x) dx$$
$$= \sum_{k=m}^{n-1} \int_{k}^{k+1} f(x) dx$$
$$\leq \sum_{k=m}^{n-1} f(k)$$
$$< \varepsilon.$$

This shows that $\int_1^i f(x) dx \to L$ for some $L \ge 0$, and furthermore, $\int_1^i f(x) dx \le L$ for all $i \ge 1$ since the sequence is monotonically increasing. Let $\varepsilon > 0$ be given; there exists a $N \ge 1$ such that $0 \le L - \int_1^i f(x) dx < \varepsilon$ whenever $i \ge N$. Now for all real $b \ge N + 1$,

$$\int_{1}^{\lfloor b \rfloor} f(x) \, dx \le \int_{1}^{b} f(x) \, dx$$
$$0 \le L - \int_{1}^{b} f(x) \, dx \le L - \int_{1}^{\lfloor b \rfloor} f(x) \, dx$$
$$< \varepsilon.$$

This proves that $\int_1^{\infty} f(x) dx$ converges to L.

Theorem 90. [Exercise 6.9] Suppose that F and G are differentiable on [a, b] for every b > a, $F' = f \in \mathcal{R}$ and $G' = g \in \mathcal{R}$. If

$$\lim_{b \to \infty} F(b)G(b)$$

exists (with a finite value) and

$$\int_{a}^{\infty} f(x)G(x) \, dx$$

converges, then

$$\int_{a}^{\infty} F(x)g(x) \, dx = \lim_{b \to \infty} F(b)G(b) - F(a)G(a) - \int_{a}^{\infty} f(x)G(x) \, dx.$$

Proof. For every b > a,

$$\int_{a}^{b} F(x)g(x) \, dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x) \, dx.$$

The result follows from Theorem 4.4.

Theorem 91. [Exercise 6.10] Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

(1) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q},$$

with equality if $u^p = v^q$.

(2) If
$$f \in \mathcal{R}(\alpha)$$
, $g \in \mathcal{R}(\alpha)$, $f \ge 0$, $g \ge 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha,$$
then

tnen

$$\int_{a}^{b} fg \, d\alpha \le 1.$$

(3) If f and g are complex functions in $\mathcal{R}(\alpha)$, then

$$\left|\int_{a}^{b} fg \, d\alpha\right| \leq \left\{\int_{a}^{b} \left|f\right|^{p} \, d\alpha\right\}^{1/p} \left\{\int_{a}^{b} \left|g\right|^{q} \, d\alpha\right\}^{1/q}.$$

Proof. We have

$$uv = (u^p)^{1/p} (v^q)^{1/q}$$

= $\exp\left(\frac{1}{p}\log u^p\right) \exp\left(\frac{1}{q}\log v^q\right)$
= $\exp\left(\frac{1}{p}\log u^p + \frac{1}{q}\log v^q\right)$
 $\leq \frac{1}{p}\exp\left(\log u^p\right) + \frac{1}{q}\exp\left(\log v^q\right)$
= $\frac{u^p}{p} + \frac{v^q}{q}$

since 1/q = 1 - 1/p and exp is convex. If $u^p = v^q$, then

$$uv = (u^{p})^{1/p} (v^{q})^{1/q}$$

= $(u^{p})^{1/p+1/q}$
= u^{p}
= $\frac{u^{p}}{p} + \frac{v^{q}}{q}.$

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha.$$

Then (on [a, b])

$$\begin{split} fg &\leq \frac{f^p}{p} + \frac{g^q}{q} \\ \int_a^b fg \ d\alpha &\leq \frac{1}{p} \int_a^b f^p \ d\alpha + \frac{1}{q} \int_a^b g^q \ d\alpha \\ &= 1, \end{split}$$

which proves (2). Now suppose that f and g are functions in $\mathcal{R}(\alpha)$. Let

$$A = \left\{ \int_{a}^{b} |f|^{p} d\alpha \right\}^{1/p},$$
$$B = \left\{ \int_{a}^{b} |g|^{q} d\alpha \right\}^{1/q}$$

so that

$$\int_{a}^{b} \left(\frac{|f|}{A}\right)^{p} d\alpha = 1 = \int_{a}^{b} \left(\frac{|g|}{B}\right)^{q} d\alpha$$
Applying (2) gives

assuming that A, B > 0. Applying (2) gives

$$\int_{a}^{b} \frac{|f| |g|}{AB} \, d\alpha \le 1,$$

and then

$$\begin{split} \left| \int_{a}^{b} fg \, d\alpha \right| &\leq \int_{a}^{b} |f| \, |g| \, d\alpha \\ &\leq AB \\ &= \left\{ \int_{a}^{b} |f|^{p} \, d\alpha \right\}^{1/p} \left\{ \int_{a}^{b} |g|^{q} \, d\alpha \right\}^{1/q}, \end{split}$$

which proves (3).

Theorem 92. [Exercise 6.11] Let α be a fixed increasing function on [a, b]. For $u \in \mathcal{R}(\alpha)$, define

$$||u||_2 = \left\{ \int_a^b |u|^2 \ d\alpha \right\}^{1/2}.$$

Suppose $f, g, h \in \mathcal{R}(\alpha)$. Then

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2.$$

Proof. On [a, b] we have

$$(f-h)^{2} = (f-g+g-h)^{2}$$

= $(f-g)^{2} + 2(f-g)(g-h) + (g-h)^{2}$
$$\int_{a}^{b} |f-h|^{2} d\alpha = \int_{a}^{b} |f-g|^{2} d\alpha + 2 \int_{a}^{b} (f-g)(g-h) d\alpha + \int_{a}^{b} |g-h|^{2} d\alpha$$

$$\leq \int_{a}^{b} |f-g|^{2} d\alpha + 2 \left| \int_{a}^{b} (f-g)(g-h) d\alpha \right| + \int_{a}^{b} |g-h|^{2} d\alpha.$$

Applying Theorem 91 gives

$$\begin{split} \|f - h\|_{2}^{2} &\leq \|f - g\|_{2}^{2} + 2\left\{\int_{a}^{b}|f - g|^{2} d\alpha\right\}^{1/2}\left\{\int_{a}^{b}|g - h|^{2} d\alpha\right\}^{1/2} + \|g - h\|_{2}^{2} \\ &= \|f - g\|_{2}^{2} + 2\|f - g\|_{2}\|g - h\|_{2} + \|g - h\|_{2}^{2} \\ &= (\|f - g\|_{2} + \|g - h\|_{2})^{2}, \end{split}$$

which completes the proof.

Theorem 93. [Exercise 6.12] Suppose $f \in \mathcal{R}(\alpha)$ and $\varepsilon > 0$. Then there exists a continuous function g on [a,b] such that $||f-g||_2 < \varepsilon$.

Proof. Let $M = \sup f(x)$ and $m = \inf f(x)$ over $x \in [a, b]$, and assume that $M \neq m$ for otherwise f is constant and the result follows by setting g = f. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b] such that $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon^2/(M - m)$. Define

$$g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

for $x_{i-1} \leq t \leq x_i$; g is continuous at each x_i . For each i, let $M_i = \sup f(x)$ and $m_i = \inf f(x)$, over $x \in [x_{i-1}, x_i]$. We can rewrite g as

$$g(t) = f(x_{i-1}) + \frac{f(x_i) - f(x_{i-1})}{\Delta x_i} (t - x_{i-1}),$$

which shows that

$$m \le m_i \le g(x) \le M_i \le M$$

for all $x \in [a, b]$. Then

$$\begin{split} \|f - g\|_2^2 &= \int_a^b |f(x) - g(x)|^2 \ d\alpha \\ &= \sum_{i=1}^n \int_{x_{i-1}}^{x_i} |f(x) - g(x)|^2 \ d\alpha \\ &= \sum_{i=1}^n \int_{x_{i-1}}^{x_i} |M_i - m_i|^2 \ d\alpha \\ &= \sum_{i=1}^n |M_i - m_i|^2 \ \Delta\alpha_i \\ &\leq (M - m) \sum_{i=1}^n (M_i - m_i) \ \Delta\alpha_i \\ &= (M - m)(U(P, f, \alpha) - L(P, f, \alpha)) \\ &< \varepsilon^2, \end{split}$$

which completes the proof.

Theorem 94. [Exercise 6.13] Define

$$f(x) = \int_x^{x+1} \sin(t^2) \, dt.$$

(1) |f(x)| < 1/x if x > 0. (2) $2xf(x) = \cos(x^2) - \cos[(x+1)^2] + r(x)$ where |r(x)| < c/x and c is a constant. (3) $\limsup_{x\to\infty} xf(x) = 1$ and $\liminf_{x\to\infty} xf(x) = -1$. (4) $\int_0^\infty \sin(t^2) dt$ converges.

Proof. Let x > 0. By Theorem 6.8,

$$u \mapsto \frac{\sin(u)}{2\sqrt{u}}$$

is Riemann-integrable on $[x^2, (x+1)^2]$. Let $\varphi : [x, x+1] \to [x^2, (x+1)^2]$ be given by $t \mapsto t^2$. Since φ strictly increasing and onto, applying Theorem 6.19 gives

$$\int_{x^2}^{(x+1)^2} \frac{\sin u}{2\sqrt{u}} \, du = \int_{x}^{x+1} \sin(t^2) \, dt = f(x).$$

Let $F(u) = -\cos u$ and $G(u) = 1/(2\sqrt{u})$ so that $F'(u) = \sin u$ and $G'(u) = -1/(4u^{3/2})$. By Theorem 6.22,

$$\begin{split} f(x) &= \frac{\cos(x^2)}{2x} - \frac{\cos[(x+1)^2]}{2(x+1)} - \int_{x^2}^{(x+1)^2} \frac{\cos u}{4u^{3/2}} \, du \\ &\leq \frac{\cos(x^2)}{2x} - \frac{\cos[(x+1)^2]}{2(x+1)} + \int_{x^2}^{(x+1)^2} \frac{1}{4u^{3/2}} \, du \\ &= \frac{\cos(x^2)}{2x} - \frac{\cos[(x+1)^2]}{2(x+1)} + \frac{1}{2x} - \frac{1}{2(x+1)} \\ &= \frac{\cos(x^2) + 1}{2x} - \frac{\cos[(x+1)^2] + 1}{2(x+1)} \\ &\leq \frac{1}{x} - \frac{1}{x+1} \\ &< \frac{1}{x}, \end{split}$$

and similarly replacing $\cos u$ with 1 gives -1/x < f(x). This proves (1). For (2),

(*)
$$2xf(x) = \cos(x^2) - \cos[(x+1)^2] + r(x)$$

where

$$r(x) = \frac{1}{x+1} \cos[(x+1)^2] - x \int_{x^2}^{(x+1)^2} \frac{\cos u}{2u^{3/2}} \, du.$$

Furthermore,

$$|r(x)| \le \frac{1}{x+1} + x \int_{x^2}^{(x+1)^2} \frac{1}{2u^{3/2}} du$$

= $\frac{1}{x+1} + x \left(\frac{1}{x} - \frac{1}{x+1}\right)$
= $\frac{2}{1+x}$
< $\frac{2}{x}$

since 2x < 2 + 2x. Then equation (*) shows (3). The integral $\int_0^\infty \sin(t^2) dt$ converges if $\int_1^\infty \sin(t^2) dt$ converges. As in (1) we have for all b > 1,

$$\int_{1}^{b} \sin(t^{2}) dt = \int_{1}^{b^{2}} \frac{\sin(u)}{2\sqrt{u}} du$$

and

$$\int_{1}^{b^{2}} \frac{\sin(u)}{2\sqrt{u}} \, du = -\frac{\cos(b^{2})}{2b} + \frac{\cos 1}{2} - \int_{1}^{b^{2}} \frac{\cos u}{4u^{3/2}} \, du.$$

Since $\int_1^\infty 1/(4u^{3/2}) du$ converges, applying Theorem 90 shows that $\int_0^\infty \sin(t^2) dt$ converges.

Theorem 95. [Exercise 6.15] Suppose that $f : [a, b] \to \mathbb{R}$ is a continuously differentiable function with f(a) = f(b) = 0, and

$$\int_{a}^{b} f(x)^2 \, dx = 1.$$

Then

$$\int_{a}^{b} xf(x)f'(x) \, dx = -\frac{1}{2}$$

and

$$\left(\int_a^b f'(x)^2 \, dx\right) \left(\int_a^b x^2 f(x)^2 \, dx\right) > \frac{1}{4}.$$

Proof. Let F(x) = f(x) and G(x) = xf(x) so that F'(x) = f'(x) and G'(x) = xf'(x) + f(x). By Theorem 6.22,

$$\int_{a}^{b} xf(x)f'(x) \, dx = -\int_{a}^{b} f(x)[xf'(x) + f(x)] \, dx$$
$$= -\int_{a}^{b} f(x)^{2} \, dx - \int_{a}^{b} xf(x)f'(x) \, dx$$
$$= -\frac{1}{2}.$$

By Theorem 91 we have

$$\frac{1}{4} = \left| \int_{a}^{b} [f'(x)][xf(x)] \, dx \right|^{2} \le \left(\int_{a}^{b} |f'(x)|^{2} \, dx \right) \left(\int_{a}^{b} |xf(x)|^{2} \, dx \right).$$

Theorem 96. [Exercise 6.16] For $1 < s < \infty$, define

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

(1)
$$\zeta(s) = s \int_{1}^{\infty} \frac{\lfloor x \rfloor}{x^{s+1}} dx.$$

(2)
$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{x - \lfloor x \rfloor}{x^{s+1}} dx.$$

Proof. For every positive integer N,

s

$$\begin{split} \int_{1}^{N} \frac{\lfloor x \rfloor}{x^{s+1}} \, dx &= s \sum_{n=1}^{N-1} \int_{n}^{n+1} \frac{\lfloor x \rfloor}{x^{s+1}} \, dx \\ &= s \sum_{n=1}^{N-1} n \int_{n}^{n+1} \frac{1}{x^{s+1}} \, dx \\ &= \sum_{n=1}^{N-1} n \left(\frac{1}{n^{s}} - \frac{1}{(n+1)^{s}} \right) \\ &= \sum_{n=1}^{N-1} \left(\frac{1}{n^{s-1}} - \frac{n+1}{(n+1)^{s}} + \frac{1}{(n+1)^{s}} \right) \\ &= \sum_{n=1}^{N-1} \left(\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}} \right) + \sum_{n=2}^{N} \frac{1}{n^{s}} \\ &= 1 - \frac{1}{N^{s-1}} + \sum_{n=2}^{N} \frac{1}{n^{s}} \\ &= \sum_{n=1}^{N} \frac{1}{n^{s}} - \frac{1}{N^{s-1}} \end{split}$$

so that

$$s\int_{1}^{\infty} \frac{\lfloor x \rfloor}{x^{s+1}} \, dx = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

since s - 1 > 0. For (2), we have

$$\frac{s}{s-1} - s \int_{1}^{N} \frac{x - \lfloor x \rfloor}{x^{s+1}} \, dx = \frac{s}{s-1} - s \int_{1}^{N} \frac{1}{x^{s}} \, dx + s \int_{1}^{N} \frac{\lfloor x \rfloor}{x^{s+1}} \, dx$$
$$= \sum_{n=1}^{N} \frac{1}{n^{s}} + \left(\frac{s}{s-1}\right) \frac{1}{N^{s-1}} - \frac{1}{N^{s-1}}$$

and again,

$$\frac{s}{s-1} - s \int_1^\infty \frac{x - \lfloor x \rfloor}{x^{s+1}} \, dx = \sum_{n=1}^\infty \frac{1}{n^s}$$

if s > 1. In fact, the integral in (2) converges for all s > 0 since

$$\int_{1}^{N} \frac{x - \lfloor x \rfloor}{x^{s+1}} dx \le \int_{1}^{N} \frac{1}{x^{s+1}} dx$$
$$= \frac{1}{s} \left(1 - \frac{1}{N^{s}} \right).$$

Lemma 97. Suppose that $f \in \mathcal{R}$ on [a, b] and let P be a partition of [a, b]. Let c be a real number. If $U(P^*, f, \alpha) \geq c$ for every refinement P^* of P, then $\int_a^b f \, d\alpha \geq c$. If $L(P^*, f, \alpha) \leq c$ for every refinement P^* of P, then $\int_a^b f \, d\alpha \leq c$.

Proof. Let $\varepsilon > 0$. There exists a partition P' of [a, b] such that

$$U(P', f, \alpha) < \int_{a}^{b} f \, d\alpha + \varepsilon$$

Let $P^* = P \cup P'$; since P^* is a refinement of P, we have

(*)

$$2 \le U(P^*, f, \alpha) \le U(P', f, \alpha) < \int_a^b f \, d\alpha + \varepsilon,$$

which completes the proof since $\varepsilon > 0$ was arbitrary. The case for the lower sums is analogous.

Theorem 98. [Exercise 6.17] Suppose α increases monotonically on [a, b], g is continuous, and g(x) = G'(x) for all $x \in [a, b]$. Then

$$\int_{a}^{b} \alpha(x)g(x) \, dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} G(x) \, d\alpha$$

Proof. Let $\varepsilon > 0$ and let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b] such that $U(P, g) - L(P, g) < \varepsilon$. Applying the mean value theorem gives points $t_i \in (x_{i-1}, x_i)$ such that $g(t_i) \Delta x_i = G(x_i) - G(x_{i-1})$. Then

$$\sum_{i=1}^{n} \alpha(x_i) g(t_i) \Delta x_i = \sum_{i=1}^{n} \alpha(x_i) \left[G(x_i) - G(x_{i-1}) \right]$$
$$= \sum_{i=2}^{n+1} \alpha(x_{i-1}) G(x_{i-1}) - \sum_{i=1}^{n} \alpha(x_i) G(x_{i-1})$$
$$= G(b) \alpha(b) - G(a) \alpha(a) - \sum_{i=1}^{n} G(x_{i-1}) \Delta \alpha_i$$

and

$$\sum_{i=1}^{n} |g(x_i) - g(t_i)| \, \triangle x_i < \varepsilon$$

by Theorem 6.7 so that

$$\left|\sum_{i=1}^{n} \alpha(x_i) g(x_i) \triangle x_i - \sum_{i=1}^{n} \alpha(x_i) g(t_i) \triangle x_i\right| = \left|\sum_{i=1}^{n} \alpha(x_i) \left[g(x_i) - g(t_i)\right] \triangle x_i\right|$$
$$\leq \sum_{i=1}^{n} |\alpha(x_i) \left[g(x_i) - g(t_i)\right]| \triangle x_i$$
$$\leq M\varepsilon$$

where $M = \sup \alpha(x)$ over $x \in [a, b]$. From (*) we have

$$\sum_{i=1}^{n} \alpha(x_i)g(x_i) \Delta x_i \le G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta \alpha_i + M\varepsilon$$
$$L(P, \alpha g) + L(P, G, \alpha) \le G(b)\alpha(b) - G(a)\alpha(a) + M\varepsilon$$

and similarly

$$G(b)\alpha(b) - G(a)\alpha(a) - M\varepsilon \le U(P, \alpha g) + U(P, G, \alpha).$$

But these two inequalities are true for any refinement of P, so by Theorem 97,

$$S - M\varepsilon \leq \overline{\int}_{a}^{b} \alpha(x)g(x) \, dx = \underline{\int}_{a}^{b} \alpha(x)g(x) \, dx \leq S + M\varepsilon$$

where

$$S = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} G(x) \, d\alpha.$$

Since ε was arbitrary, the result follows.

Theorem 99. [Exercise 6.18] Let $\gamma_1, \gamma_2, \gamma_3$ be curves in the complex plane, defined on $[0, 2\pi]$ by

$$\gamma_1(t) = e^{it}, \quad \gamma_2(t) = e^{2it}, \quad \gamma_3(t) = e^{2\pi i t \sin(1/t)}.$$

- (1) γ_1, γ_2 are rectifiable. γ_1 has length 2π and γ_2 has length 4π . (2) γ_3 is not rectifiable.

Proof. Applying Theorem 6.27 shows that

$$\Lambda(\gamma_1) = \int_0^{2\pi} \left| i e^{it} \right| dt$$
$$= 2\pi$$

and

$$\Lambda(\gamma_1) = \int_0^{2\pi} \left| 2ie^{2it} \right| \, dt$$
$$= 4\pi.$$

Let $P = \{x_{2n+1}, ..., 2/\pi\}$ with

$$x_k = \frac{2}{(2k+1)\pi}$$

so that

$$\Lambda(P,\gamma_3) = \sum_{k=1}^{2n+1} \left| e^{2\pi i x_k \sin(1/x_k)} - e^{2\pi i x_{k-1} \sin(1/x_{k-1})} \right|.$$

$$\geq \sum_{k=1}^n \left| e^{4i/(4k+1)} - e^{-4i/(4k-1)} \right|$$

$$= \sum_{k=1}^n \sqrt{2 - 2\cos\left(\frac{4}{4k+1} + \frac{4}{4k-1}\right)}$$

$$\to \infty$$

as $n \to \infty$ since $\sqrt{2 - 2\cos x} = x + O(x^3)$ and

$$\sum_{k=1}^{\infty} \left(\frac{4}{4k+1} + \frac{4}{4k-1} \right)$$

diverges. This shows that $\Lambda(\gamma_3) = +\infty$ and therefore γ_3 is not rectifiable.

Theorem 100. [Exercise 6.19] Let $\gamma_1 : [a, b] \to \mathbb{R}^k$ be a curve and let $\phi : [c, d] \to [a, b]$ be a continuous bijection such that $\phi(c) = a$. Define $\gamma_2 = \gamma_1 \circ \phi$. Then:

- (1) γ_2 is an arc if and only if γ_1 is an arc.
- (2) γ_2 is a closed curve if and only if γ_1 is a closed curve.
- (3) γ_2 is rectifiable if and only if γ_1 is rectifiable, and in that case γ_1, γ_2 have the same length.

Proof. (1) is clear since the composition of injections is also an injection $(\phi, \phi^{-1} \text{ are both injective})$. (2) is clear since ϕ is monotonically increasing and $\phi(d) = b$. For (3), suppose that γ_1 is rectifiable. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [c, d]. Define $P' = \{\phi(x_0), \ldots, \phi(x_n)\}$; This is a well-defined partition of [a, b], for ϕ must be monotonically

increasing. Then

$$\Lambda(P, \gamma_2) = \sum_{i=1}^n |\gamma_1(\phi(x_i)) - \gamma_1(\phi(x_{i-1}))|$$

= $\Lambda(P', \gamma_1)$
< $\Lambda(\gamma_1)$.

Since this holds for all partitions, we have $\Lambda(\gamma_2) \leq \Lambda(\gamma_1)$ which shows that γ_2 is rectifiable. Noting that $\gamma_1 = \gamma_2 \circ \phi^{-1}$, the same argument proves that $\Lambda(\gamma_1) \leq \Lambda(\gamma_2)$. \Box

CHAPTER 7. SEQUENCES AND SERIES OF FUNCTIONS

Theorem 101. [Exercise 7.1] Every uniformly convergent sequence of bounded functions is uniformly bounded.

Proof. Let $f_n \to f$ uniformly on E, where each f_n is bounded. That is, for each n, $M_n = \sup_{x \in E} |f_n(x)|$ is finite. Choose an integer N such that $|f_n(x) - f(x)| < 1$ for all $n \geq N$ and $x \in E$. In particular,

$$|f(x)| \le |f_N(x) - f(x)| + |f_N(x)|$$

< $M_N + 1$

for all $x \in E$, and

$$|f_n(x)| \le |f_n(x) - f(x)| + |f(x)|$$

< $M_N + 2$

for all $n \ge N$. Take $M = \max \{M_1, \ldots, M_{N-1}, M_N + 2\}$ so that $|f_n(x)| \le M$ for all $n \ge 1$. This completes the proof.

Theorem 102. [Exercise 7.2] If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, then $\{f_n + g_n\}$ converges uniformly on E. Furthermore, if $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, then $\{f_ng_n\}$ converges uniformly on E.

Proof. Let $f_n \to f$ and $g_n \to g$ uniformly on E. For any $\varepsilon > 0$, there exist integers N_1, N_2 such that for all $x \in E$, $|f_n(x) - f(x)| < \varepsilon/2$ whenever $n \ge N_1$ and $|g_n(x) - g(x)| < \varepsilon/2$ whenever $n \ge N_2$. Then $|f_n(x) - f(x) + g_n(x) - g(x)| < \varepsilon$ whenever $x \in E$ and $n \ge \max(N_1, N_2)$, which shows that $f_n + g_n \to f + g$ uniformly on E. Now suppose that $\{f_n\}, \{g_n\}$ are sequences of bounded functions, so that f, g are bounded. Let $\varepsilon > 0$ be given. Choose N_1, N_2 such that for all $x \in E$, $|f_n(x) - f(x)| < \sqrt{\varepsilon}$ whenever $n \ge N_1$ and $|g_n(x) - g(x)| < \sqrt{\varepsilon}$ whenever $n \ge N_2$. Then for all $x \in E$ and $n \ge \max(N_1, N_2)$,

$$|[f_n(x) - f(x)][g_n(x) - g(x)]| < \varepsilon,$$

which shows that $(f_n - f)(g_n - g) \to 0$ uniformly on *E*. Since f, g are bounded, $f(g_n - g) \to 0$ and $g(f_n - f) \to 0$ uniformly on *E*, so that

$$f_n g_n - fg = (f_n - f)(g_n - g) + f(g_n - g) + g(f_n - f)$$

 $\to 0$

uniformly on E.

Theorem 103. [Exercise 7.3] Let $f_n(x) = x$ and $g_n(x) = 1/n$; $f_n \to x$ and $g_n \to 0$ uniformly on \mathbb{R} , but $\{f_ng_n\}$ does not converge uniformly.

Proof. Choose $\varepsilon = 1$ and let N be an integer. Then $(f_n g_n)(N) \ge 1 = \varepsilon$ for all $n \ge N$, which shows that $\{f_n g_n\}$ does not converge uniformly.

Example 104. [Exercise 7.4] Consider

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$$

For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded?

- The series does not converge when x = 0, and is undefined when $x = -1/n^2$ for any integer $n \ge 1$. However, it converges absolutely for all other x.
- The series converges uniformly on a set E if and only if $0, -1, -1/2^2, -1/3^2, \ldots$ are all interior points of E^c .
- f is continuous and bounded on any set where it converges uniformly.

Example 105. [Exercise 7.5] Let

$$f_n(x) = \begin{cases} 0 & \text{for } x < \frac{1}{n+1}, \\ \sin^2 \frac{\pi}{x} & \text{for } \frac{1}{n+1} \le x \le \frac{1}{n}, \\ 0 & \text{for } \frac{1}{n} < x. \end{cases}$$

For any x, there exists a N such that 1/n < x for all $n \ge N$; this shows that $f_n \to 0$. Choose $\varepsilon = 1$; then for all N we have

$$f_N(\frac{(2N+1)}{2N(N+1)}) = \sin^2(2N(N+1)\pi/(2N+1))$$

= 1,

which shows that $\{f_n\}$ does not converge uniformly. Now consider the series $\sum f_n(x)$. For any x there are only finitely many non-zero terms, so that the series converges absolutely for all x. Again, the series fails to converge uniformly.

Theorem 106. [Exercise 7.6] The series

(*)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \left(\frac{x^2}{n^2} + \frac{1}{n}\right)$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Proof. Let I be a bounded interval and let $M = \sup_{x \in I} |x|$. By Theorem 3.43, $\sum (-1)^n / n$ converges, and $\sum (-1)^n x^2 / n^2$ converges (absolutely) for all x. Therefore (*) converges, and it remains to show that the convergence is uniform. Let $\varepsilon > 0$ be given and choose N_1 such that

$$\left|\sum_{k=m}^{n}(-1)^{n}\frac{1}{n}\right| < \varepsilon/2$$

whenever $n \ge m \ge N_1$. Also choose N_2 such that

$$\sum_{k=m}^{n} \frac{M^2}{n^2} < \varepsilon/2$$

whenever $n \ge m \ge N_2$. Then for all $n \ge m \ge \max(N_1, N_2)$ and all $x \in I$,

$$\left|\sum_{k=m}^{n} (-1)^{n} \left(\frac{x^{2}}{n^{2}} + \frac{1}{n}\right)\right| \leq \left|\sum_{k=m}^{n} (-1)^{n} \frac{1}{n}\right| + \sum_{k=m}^{n} \frac{x^{2}}{n^{2}}$$
$$\leq \left|\sum_{k=m}^{n} (-1)^{n} \frac{1}{n}\right| + \sum_{k=m}^{n} \frac{M^{2}}{n^{2}}$$
$$< \varepsilon.$$

This shows that (*) converges absolutely by Theorem 7.8. That the series does not converge absolutely is clear from the fact that $\sum 1/n$ diverges.

Theorem 107. [Exercise 7.7] Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined for all positive integers n by

$$f_n(x) = \frac{x}{1 + nx^2}.$$

Then $\{f_n\}$ converges uniformly to a function f, and the equation

(*)
$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

is correct if $x \neq 0$ but false if x = 0.

Proof. Let $\varepsilon > 0$ be given and choose an integer N such that $N > 1/\varepsilon^2$. Let $n \ge N$ and $x \in \mathbb{R}$. If $|x| < \varepsilon$ then

$$\left|\frac{x}{1+nx^2}\right| \le |x|$$
< ε .

Otherwise,

$$\left|\frac{x}{1+nx^2}\right| \le \left|\frac{1}{nx}\right| < \varepsilon.$$

This shows that $f_n \to 0$ uniformly on \mathbb{R} . For each *n* we have

$$f'_n(x) = \frac{1 - nx^2}{(1 + nx^2)^2}$$

If $x \neq 0$ then $f'_n(x) \to 0$ as $n \to \infty$ so that (*) is true, but $f'_n(0) = 1$ while f'(0) = 0, which contradicts (*).

Theorem 108. [Exercise 7.8] If

$$I(x) = \begin{cases} 0 & \text{for } x \le 0, \\ 1 & \text{otherwise,} \end{cases}$$

if $\{x_n\}$ is a sequence of distinct points of (a, b), and if $\sum |c_n|$ converges, then the series

$$f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n)$$

converges uniformly on [a, b]. Additionally, f is continuous for every $x \neq x_n$.

Proof. Applying Theorem 7.10 shows that the series converges uniformly on [a, b] since

$$|c_n I(x - x_n)| \le |c_n|$$

for each n and $\sum |c_n|$ converges. If $x \neq x_n$, then there exists a neighborhood N of x such that $N \cap \{x_n\}$ is empty. It is clear from the definition that f is constant on N, that is, f(t) = f(u) for all $t, u \in N$. This shows that f is continuous at x. \Box

Theorem 109. [Exercise 7.9] Let $\{f_n\}$ be a sequence of continuous functions which converges uniformly to a function f on a set E. Then

$$\lim_{n \to \infty} f_n(x_n) = f(x)$$

for every sequence of points $x_n \in E$ such that $x_n \to x$ and $x \in E$.

Proof. Let $\varepsilon > 0$ be given. Choose an integer N_1 such that $|f_n(t) - f(t)| < \varepsilon/2$ whenever $t \in E$ and $n \ge N_1$. By Theorem 7.12, f is continuous on E, so that we may choose a $\delta > 0$ such that $|f(t) - f(x)| < \varepsilon/2$ whenever $|t - x| < \delta$, and choose an integer N_2 such that $|x_n - x| < \delta$ whenever $n \ge N_2$. Then for all $n \ge \max(N_1, N_2)$,

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)|$$

< \varepsilon.

Theorem 110. [Exercise 7.11] Let $\{f_n\}, \{g_n\}$ be sequences in a set E. If

(1) $\sum f_n$ has uniformly bounded partial sums, (2) $g_n \to 0$ uniformly on E, and (3) $g_1(x) \ge g_2(x) \ge g_3(x) \ge \cdots$ for every $x \in E$,

then $\sum f_n g_n$ converges uniformly on E.

Proof. Note that $g_k(x) \ge 0$ for all $x \in E$ and $k \ge 1$, since each $\{g_n(x)\}$ is monotonic. Let $\varepsilon > 0$ be given. Since $\sum f_n$ has uniformly bounded partial sums, we can let $M = \sup_{x \in E} |A_n(x)|$ where $A_n(x)$ denotes the partial sums of $\sum f_n(x)$. Choose an integer N such that $g_N < \varepsilon/(2M)$. Then for all $n \ge m \ge N$ and $x \in E$,

$$\left| \sum_{k=m}^{n} f_n(x) g_n(x) \right| = \left| \sum_{k=m}^{n-1} A_k(x) [g_k(x) - g_{k+1}(x)] + A_n(x) g_n(x) - A_{m-1}(x) g_m(x) \right|$$

$$\leq \sum_{k=m}^{n-1} |A_k(x)| [g_k(x) - g_{k+1}(x)] + |A_n(x) g_n(x)| + |A_{m-1}(x) g_m(x)|$$

$$\leq M \left(\sum_{k=m}^{n-1} [g_k(x) - g_{k+1}(x)] + g_n(x) + g_m(x) \right)$$

$$= 2M g_m(x)$$

$$< \varepsilon.$$

Theorem 111. Let $\{f_n\}$ be a sequence of functions that converge uniformly to f on $[a, \infty)$, where $\lim_{x\to\infty} f_n(x)$ exists for each n. Let

$$A_n = \lim_{x \to \infty} f_n(x);$$

then $\{A_n\}$ converges, and

$$\lim_{x \to \infty} f(x) = \lim_{n \to \infty} A_n.$$

Proof. Let $\varepsilon > 0$ be given. Since $\{f_n\}$ converges uniformly to f, there exists an integer N such that $|f_n(x) - f_m(x)| < \varepsilon$ whenever every $x \ge a$ and $m, n \ge N$. By Corollary 30, $|A_n - A_m| < \varepsilon$ for all $m, n \ge N$. This shows that $\{A_n\}$ converges to some A. Choose an integer N such that $|f(x) - f_N(x)| < \varepsilon/3$ for all $x \ge a$ and $|A_N - A| < \varepsilon/3$. Then choose a M such that $|f_N(x) - A_N| < \varepsilon/3$ for all $x \ge M$, so that

$$|f(x) - A| \le |f(x) - f_N(x)| + |f_N(x) - A_N| + |A_N - A|$$

< ε

whenever $x \ge \max(a, M)$. This completes the proof.

Theorem 112. [Exercise 7.12] Let $g, f_n : (0, \infty) \to \mathbb{R}$ be functions Riemann-integrable on [t, T] whenever $0 < t < T < \infty$. If $|f_n| \leq g, f_n \to f$ uniformly on every compact subset of $[0, \infty)$, and

$$\int_0^\infty g(x)\,dx < \infty,$$

then

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = \int_0^\infty f(x) \, dx,$$

provided that all improper integrals exist.

Proof. Define $F_n: [0, \infty) \to \mathbb{R}$ for each n and $F: [0, \infty) \to \mathbb{R}$ by

$$F_n(b) = \int_0^b f_n(x) \, dx,$$
$$F(b) = \int_0^b f(x) \, dx,$$

and let $L = \int_0^\infty g(x) dx$ for convenience. For every b,

$$\lim_{n \to \infty} F_n(b) = F(b)$$

by Theorem 7.16, so that $F_n \to F$ pointwise on $[0, \infty)$. We also want to show that convergence is uniform. Let $\varepsilon > 0$ be given. Choose a $M \ge 0$ such that

$$\int_{M}^{\infty} g(x) \, dx = L - \int_{0}^{M} g(x) \, dx$$
$$< \frac{\varepsilon}{4},$$

and choose an integer N such that

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2M}$$

whenever $n \ge N$ and $0 \le x \le M$. Then for all $b \ge M$ and $n \ge N$,

$$|F_n(b) - F(b)| = \left| \int_0^b [f_n(x) - f(x)] \, dx \right|$$

$$\leq \int_0^b |f_n(x) - f(x)| \, dx$$

$$\leq \int_0^M |f_n(x) - f(x)| \, dx + 2 \int_M^\infty g(x) \, dx$$

$$< \varepsilon,$$

while $|F_n(b) - F(b)| < \varepsilon/4 < \varepsilon$ trivially when b < M. The result then follows from applying Theorem 111 on $\{F_n\}$.

Theorem 113. [Exercise 7.13] Let $\{f_n\}$ be a sequence of monotonically increasing functions on \mathbb{R} with $0 \leq f_n(x) \leq 1$ for all x and all n.

(1) There is a function f and a sequence $\{n_k\}$ such that

$$f(x) = \lim_{k \to \infty} f_{n_k}(x)$$

for every $x \in \mathbb{R}$.

(2) If f is continuous, then $f_{n_k} \to f$ uniformly on compact sets.

Proof. By Theorem 7.23, there exists a subsequence of functions $\{f_{n_k}\}$ such that $\{f_{n_k}(r)\}$ converges to some f(r) for all $r \in \mathbb{Q}$. For all $x \in \mathbb{R}$, define

$$f(x) = \sup_{r \le x, r \in \mathbb{Q}} f(r).$$

Let $x \in \mathbb{R} \setminus \mathbb{Q}$ and suppose that f is continuous at x. Let $L = \lim_{k \to \infty} f_{n_k}(x)$; we want to show that f(x) = L. For every rational $r \leq x$ we have $f_{n_k}(r) \leq f_{n_k}(x)$ and therefore $f(r) \leq L$ by taking $k \to \infty$. This shows that $f(x) \leq L$. Suppose that f(x) < L, and choose a $\varepsilon > 0$ with $f(x) < f(x) + \varepsilon < L$. Choose a $\delta > 0$ such that $|f(x) - f(t)| < \varepsilon$ whenever $|x - t| < \delta$. If $r \in \mathbb{Q}$ with $x < r < x + \delta$, then f(r) < L. But

$$L = \lim_{k \to \infty} f_{n_k}(x) \le \lim_{k \to \infty} f_{n_k}(r) = f(r) < L,$$

which is a contradiction. Therefore f(x) = L. If x < y then $f(x) = \lim_{k\to\infty} f_{n_k}(x) \leq \lim_{k\to\infty} f_{n_k}(y) = f(y)$; by Theorem 4.30, f has at most a countable number of discontinuities $\{t_i\}$. Applying Theorem 7.23 again to $\{t_i\}$ produces a subsequence $\{f_{n_j}\}$ of $\{f_{n_k}\}$ such that $f_{n_j}(t_i)$ converges to some u_i for every i. Redefining f(x) using the new subsequence $\{f_{n_j}\}$ proves (1).

For (2), let f be a continuous function and let $\{n_k\}$ be a sequence such that $f(x) = \lim_{k\to\infty} f_{n_k}(x)$ for every $x \in \mathbb{R}$. Let $E \subseteq \mathbb{R}$ be a compact set and let $\varepsilon > 0$ be given. By Theorem 4.19, f is uniformly continuous on E, so there exists a $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon/3$ whenever $|x - y| < \delta$. Let $A = \inf E$ and $B = \sup E$; construct a set of points $\{x_1, \ldots, x_n\}$ where $A = x_1 \leq \cdots \leq x_n = B$ and $x_{i+1} - x_i < \delta/2$ for all $1 \leq i \leq n-1$. Then for each $1 \leq i \leq n-1$ we have

$$|f(x_{i+1}) - f(x_i)| = \left| \lim_{k \to \infty} [f_{n_k}(x_{i+1}) - f_{n_k}(x_i)] \right| < \varepsilon/3$$

and we may choose an integer N_i such that both $|f_{n_k}(x_{i+1}) - f_{n_k}(x_i)| < \varepsilon/3$ and $|f_{n_k}(x_i) - f(x_i)| < \varepsilon/3$ whenever $k \ge N_i$; let $N = \max\{N_i\}$. Let $x \in E$ and choose a j such that $x \in [x_j, x_{j+1}]$. Then for all $k \ge N$, since each f_n is monotonically increasing we have

$$0 \le f_{n_k}(x) - f_{n_k}(x_j) \le f_{n_k}(x_{j+1}) - f_{n_k}(x) < \varepsilon/3$$

so that

$$|f_{n_k}(x) - f(x)| \le |f_{n_k}(x) - f_{n_k}(x_j)| + |f_{n_k}(x_j) - f(x_j)| + |f(x_j) - f(x)| < \varepsilon.$$

This completes the proof.

Theorem 114. [Exercise 7.15] Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let $f_n(t) = f(nt)$ for $n = 1, 2, 3, \ldots$. If $\{f_n\}$ is equicontinuous on [0, 1], then f is constant on $[0, \infty)$.

Proof. Suppose that f is not constant and without loss of generality, let $0 \le x_1 < x_2$ with $f(x_1) < f(x_2)$. Since $\{f_n\}$ is equicontinuous, there exists a $\delta > 0$ such that $|f(nt) - f(nu)| < [f(x_2) - f(x_1)]/2$ whenever $n \ge 1, 0 \le t, u \le 1$, and $|t - u| < \delta$. Let n be an integer with

$$n > \max\left\{\frac{x_2 - x_1}{\delta}, x_1, x_2\right\}.$$

Set $t = x_2/n$ and $u = x_1/n$; then $0 \le t, u < 1$ and $|t - u| = (x_2 - x_1)/n < \delta$ so that

$$|f(nt) - f(nu)| = f(x_2) - f(x_1) < [f(x_2) - f(x_1)]/2,$$

which is a contradiction.

Theorem 115. [Exercise 7.16] Let $\{f_n\}$ be an equicontinuous sequence of functions on a compact set K. If $\{f_n\}$ converges pointwise on K, then $\{f_n\}$ converges uniformly on K.

Proof. Let $\varepsilon > 0$ be given. There exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \varepsilon$ whenever $n \ge 1, x, y \in K$, and $|x - y| < \delta$. The proof is now almost identical to part (2) of Theorem 113.

Theorem 116. [Exercise 7.18] Let $\{f_n\}$ be a uniformly bounded sequence of functions which are Riemann-integrable on [a, b], and let

$$F_n(x) = \int_a^x f_n(t) \, dt$$

for $a \leq x \leq b$. Then there exists a subsequence $\{F_{n_k}\}$ which converges uniformly on [a, b].

Proof. Since $\{f_n\}$ is uniformly bounded, there exists a M > 0 such that $|f_n(t)| < M$ for all n and t. Let $\varepsilon > 0$ be given. Then for all $|x - y| < \varepsilon/M$ and all n we have

$$|F_n(x) - F_n(y)| = \left| \int_y^x f_n(t) \, dt \right|$$

$$\leq \int_y^x |f_n(t)| \, dt$$

$$\leq M |x - y|$$

$$< \varepsilon,$$

which shows that $\{F_n\}$ is equicontinuous. Clearly, $\{F_n\}$ is also uniformly bounded. The result follows from Theorem 7.25.

Theorem 117. [Exercise 7.20] If f is continuous on [0, 1] and if

$$\int_0^1 f(x)x^n \, dx = 0$$

for all n = 0, 1, 2, ..., then f(x) = 0 on [0, 1].

Proof. By Theorem 7.26, there exists a sequence of polynomials P_n such that $P_n \to f$ uniformly on [0, 1]. For each n, write $P_n(x) = \sum_k a_k x^k$ so that

$$\int_{0}^{1} f(x)P_{n}(x) dx = \int_{0}^{1} f(x)\sum_{k} a_{k}x^{k} dx$$
$$= \sum_{k} a_{k} \int_{0}^{1} f(x)x^{k} dx$$
$$= 0.$$

$$f(x) = \lim_{n \to \infty} P_n(x)$$
$$\int_0^1 f(x)^2 dx = \int_0^1 \lim_{n \to \infty} f(x) P_n(x) dx$$
$$= \lim_{n \to \infty} \int_0^1 f(x) P_n(x) dx$$
$$= 0.$$

Therefore $f(x)^2 = 0$ on [0, 1].

Theorem 118. [Exercise 7.23] Let $P_0 = 0$, and define, for n = 0, 1, 2, ...,

$$P_{n+1}(x) = P_n(x) + \frac{x^2 - P_n^2(x)}{2}.$$

Then

$$\lim_{n \to \infty} P_n(x) = |x|$$

uniformly on [-1, 1].

Proof. We have the identity

$$P_{n+1}(x) = P_n(x) + \frac{[|x| + P_n(x)][|x| - P_n(x)]}{2}$$
$$|x| - P_{n+1}(x) = |x| - P_n(x) - \frac{[|x| + P_n(x)][|x| - P_n(x)]}{2}$$
$$= [|x| - P_n(x)] \left[1 - \frac{|x| + P_n(x)}{2}\right].$$

By induction on n we have $0 \le P_n(x) \le P_{n+1}(x) \le |x|$ for all n whenever $|x| \le 1$. By iteration,

$$|x| - P_n(x) = |x| \prod_{k=0}^{n-1} \left(1 - \frac{|x| + P_k(x)}{2} \right)$$
$$\leq |x| \prod_{k=0}^{n-1} \left(1 - \frac{|x|}{2} \right)$$
$$= |x| \left(1 - \frac{|x|}{2} \right)^n.$$

For $n \ge 1$, function $f(x) = x(1 - x/2)^n$ has derivative

$$f'(x) = \left(1 - \frac{x}{2}\right)^n - \frac{nx}{2} \left(1 - \frac{x}{2}\right)^{n-1} \\ = \left(1 - \frac{x}{2}\right)^{n-1} \left[1 - \left(\frac{n+1}{2}\right)x\right]$$

which vanishes at $x_0 = 2/(n+1)$. This value satisfies $f(x_0) \le x_0$. Since f'(x) > 0 when $0 \le x < x_0$ and f'(x) < 0 when $x_0 < x \le 1$,

$$|x| - P_n(x) \le \frac{2}{n+1}$$

for all $|x| \leq 1$. The result follows taking n large enough.