CHAPTER 2. Basic TOPOLOGY
Theorem 1. [Ezercise 2.9(d)] For any set E, (E°)° = E°.

Proof. Suppose x ¢ E¢ = E°U (E°), ie. o € E and ¢ (E°). Since z is not a
limit point of £ and = ¢ E°, there exists a neighborhood N of x such that N N E*¢ is
empty, i.e. N C F. This means x € E°. Then z € (E°)° = x € E¢, which shows that
(E°) C E-.

Suppose that © € B¢ = E°U (E°), i.e. # ¢ E or z is a limit point of E°. If x ¢ E then
x ¢ E°, which means x € (E°)°. If x is a limit point of E° then for any neighborhood
N of x there exists a y # = in N such that y € E€ = y ¢ E. This shows that x cannot
be an interior point of E, so z € (E°)°. Thus B¢ = (E°)". O

Theorem 2. [Exercise 2.19(b)] If A and B are disjoint open sets, then they are sepa-
rated.

Proof. We have ANB = AN(BU B') = ANB' since AN B is empty. Suppose that there
exists a x € A that is a limit point of B. Since A is open, there exists a neighborhood
N of x such that N C A. Since z is a limit point of B, there exists a y € N such that
y € B. But then y € A; this is a contradiction for A and B are disjoint. Therefore
AN B'is empty, and AN B = (. Similarly, BN A is empty. This shows that A and B
are separated. O

Theorem 3. [Exercise 2.21] Let A and B be separated subsets of some R¥, suppose
a€ A, be B, and define

p(t)=(1—t)a+tb
fort € RY. Put Ay =p'(A), By =p Y(B). Then:

(1) Ay and By are separated subsets of R*.
(2) There exists a ty € (0,1) such that p(ty) ¢ AU B.
(3) Buvery convex subset of R* is connected.

Proof. Let z € Ag so that p(xz) € A. Since A and B are separated, p(z) is not a limit
point of B and p(z) ¢ B. So there exists a neighborhood N of p(z) such that N N B
is empty. Consider Ny = p~1(NN), which is a neighborhood of z. For every y € Ny we
have p(y) € N which means p(y) ¢ B. But then y ¢ By, so x cannot be a limit point
of By. This shows that Ay N By is empty. Similarly, By N Ay is empty. Hence Ay and
By are separated.

We know that Ag U By C (0,1). Suppose that Ag U By = (0,1). Then (0,1) is the
union of two separated sets by part (1), implying that it is disconnected. This is a
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contradiction, so Ag U By is a proper subset of (0,1) and there exists a ¢y € (0,1) such
that to ¢ AO and to ¢ Bo, i.e. p(tg) ¢ AU B.

Let C' be a convex subset of R¥ and suppose that C = AU B where A and B are
separated. Choose some a € A and b € B. Then there exists a ¢ty € (0,1) such that
(1 —tg)a+tob ¢ C by statement (2). This contradicts the fact that C' is a convex set.
Hence C must be connected. UJ

Theorem 4. [Exercise 2.23] Every separable metric space has a countable base.

Proof. Let X be a separable metric space and let Y be a countable dense subset of X.
Let B = {V,,} be the collection of all neighborhoods N, (a) where a € Y and r € Q.
B is countable since Y x Q is countable; we want to show that B is a base for X. Let
E be an open set in X. For every x € E, there exists a neighborhood N of x with
radius 7 such that N C E. Let r; be some positive rational number less than r/2 and
let Ny = N,,(x). Since z is a limit point of Y, there exists a y € N; such that y € Y.
Now let V' = N,,(y); since d(z,y) < r, z € V. Also V. C N C E, since for every
veV,dwvx) <dwvy) +dy,z) <2r <r. Sincey €Y and r; € Q, V € B. This
shows that B is a countable base for X. O

Theorem 5. [Ezercise 2.24] If X is a metric space in which every infinite subset has
a limit point, then X is separable.

Proof. Fix ¢ > 0 and choose z; € X. Having chosen z1,...,z; € X, choose 2,4, € X,
if possible, so that d(z;,z;41) > ¢ for i = 1,...,j. Suppose that this process does not
terminate after a finite number of steps. Then we have an infinite set S = {1, xs,...}
in which d(x;,x;) > ¢ for every j # i. Suppose that x( is a limit point of S. Then
there are an infinite number elements z; € S such that d(z, z;) < 6/2. But if x;, x; are
two such elements, d(x;,z;) < d(z;,z) + d(z,z;) < 0, which is a contradiction. Hence
S cannot have any limit points. This contradicts the assumption that every infinite
subset has a limit point, so the process must terminate after a finite number of steps.
Let Ss = {x1,x2,...} be the set of points found by this process for some 4.

The union C' = Ns(xq1) U Ns(z3) U -+ covers X for if z € X \ C, then z would have
been added to S;. Let D = J -, Si /n; We want to show that D is a countable dense
subset of X. That D is countable is clear since each Sy, is finite. Let x € X and let
N be a neighborhood of z with radius r. Let n be a positive integer such that n > 1/r.
There exists some Sy, € D and some s € Sy, such that N;/,(s) contains x, since
Usesl/n Ni/n(s) covers X. Now d(s,z) < 1/n <7, s0 s € N. Therefore z is a limit

point of D. This proves that X is separable. O

Lemma 6. Let X be a metric space with a countable base. Then X is separable.
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Proof. Let V.= {Vi,V5,...} be a countable base for X. For every i choose an element
z; € Vi, and let D = {x,x9,...}; D is countable since V' is countable. Let z € X
and let N be a neighborhood of x. Then N is the union of a subcollection of V' and
therefore contains some element from D. This shows that x is a limit point of D, and
that D is dense in X. O

Theorem 7. [Ezercise 2.25] Every compact metric space K has a countable base, and
K is therefore separable.

Proof. Let B,, be the collection of all neighborhoods N,(a) with r = 1/n and « €
K. Since B, is an open cover of K and K is compact, there exists a finite subcover
C, = {V1,Va,...,Vi} C B, that covers K. Let C = C; UCyU---; C is countable
since each C; is countable. Let E be an open set in K. For every z € E, there
exists a neighborhood N of x with radius r such that N C E. Let n be a positive
integer such that n > 2/r. There exists some neighborhood N; € C,, centered at «
such that x € Ny, since C, covers K. Also, Ny C N C F since for every y € Ny,
d(z,y) < d(z,a)+d(a,y) < 1/n+1/n < r. This shows that C is a countable base for
K. Lemma [0] shows that K is separable. O

Theorem 8. [Ezercise 2.26] If X is a metric space in which every infinite subset has
a limait point, then X is compact.

Proof. By Theorem [5] X is separable, and by Theorem [d, X has a countable base
V ={Vi,V,,...}. Let {G,} be an open cover of X. For every x € X, there is some
open set G, such that x € G,. Since V is a base for X, there exists a V; € V with
r € V; € G,. This means that there is a countable subcover {G;} of X since each
G, was associated with an element of V. Suppose that no finite subcollection of {G;}
covers X. For every positive integer n, let F,, = (G; U---UG,)". Since {Gy,...,G,} is
a finite subcollection, each F, is nonempty while (°7, F,, = (U;2, G;)® is empty since
{G;} covers X.

Let E = {fi, fa,...} be a set where each f; is chosen from Fj;. Since E is an infinite
subset of X, F has a limit point x. Suppose that z ¢ F; for some i. Since Ff is
open, there exists a neighborhood N of x with radius r such that N N F; = (). In fact,
NN F; =0 for every j > i since F; D Fy D ---, and therefore N N E is finite. But z
is a limit point of E, so N N E must be infinite. This is a contradiction, and therefore
x € F; for all i. Then x € (), F,, but this is a contradiction for () _, F), is empty.
Thus there is a finite subcollection of {G;} that covers X, and X must be compact. [

CHAPTER 3. NUMERICAL SEQUENCES AND SERIES

Theorem 9. A sequence {p,} converges to p if and only if every subsequence of {p,}
converges to p.
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Proof. Suppose that {p,} converges to p and let {p,,} be a subsequence of {p,}. Let
e > 0 be given. Then there exists an integer N such that for every n > N, d (p,,p) < €.
Let N’ be the smallest i such that n; > N. Then for every i > N', d(p,,,p) < €.
Therefore {p,,} converges to p. Conversely, suppose that every subsequence of {p,}
converges to p. {p,} is a subsequence of itself, so it converges to p. O

Theorem 10. Let {s,} and {t,} be sequences in R. If s, <t, for n > N where N is
some constant, if s, — s, and if t, — t, then s <.

Proof. Assume s # t so that |t —s| > 0, for otherwise we are done. Since s, —
sand t, — t, t, — s, — t —s. There exists a M such that for every m > M,
[tm — Sm — (t —s)| < |t —s|. Whenever k > max (M, N), both t; — s, > 0 and ¢, —
sp — (t —s) < |t — s| hold. We know ¢ —s > 0 for if t — s < 0, then t; — s, < 0 which
is a contradiction. 0J

Theorem 11. Let {x,} and {s,} be sequences in R. If 0 < x, < s, for n > N where
N is some constant, and if s, — 0, then x,, — 0.

Proof. Let € > 0 be given. Since s, — 0, there exists a M such that for every n > M,
|sn| < e. Let N’ = max (M, N); then for every n > N', |z,| < s, < e. Therefore
x, — 0. O

Corollary 12. Let {z,},{sn},{s,} be sequences in R. If s, < x, < s, forn > N
where N is some constant, if s, — s, and if s, — s, then x, — s.

Theorem 13. Let {s,},{t,} be sequences in a metric space. If s,, — s and d (s, t,) —
0, then t, — s.

Proof. Let € > 0 be given. There exists a M such that d(s,,t,) < £/2 whenever
n > M, and there exists a N such that d(s,s,) < £/2 whenever n > N. Then for all
n > max (M, N) we have
d(s,tn) < d(s,sn)+d(sn,ty)
< e.

Theorem 14. [Theorem 3.19] If s, <'t,, for n > N where N is fized, then

limsups, <limsupt, and liminfs, <liminft,.
n—00 n—o00 n—oo n—oo

Proof. Let Ej be the set of subsequential limits of {s,} and let Fy be the set of subse-
quential limits of {¢,}. Let Ly = limsup,,_,., s, and Ly = limsup,,_, t,. If L1 = —o0

or Ly = 400, then there is nothing to prove. Otherwise, L; € E; and there exists a
subsequence {s,,} that converges to L;. Similarly, some {tn;} converges to L. Let my
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be the minimum i such that n; > N and let my be the minimum ¢ such that n; > N.
Let M = max (my, my); then s, < t, for all i > M since s, < ¢, whenever n > N.
Theorem [10| proves the required result. The case for liminf is similar. O]

Lemma 15. Let S = {s,} be a sequence in R and let E be the set of subsequential
limits of {s,}. Then sup E € (—oo,+00) if and only if S is bounded.

Proof. Suppose that S is not bounded above, i.e. for every x € R there exists a s; € S
such that s; > x. Let n; = 1 and suppose that nq,...,n; have been chosen. Choose
nk+1 to be the smallest ¢ such that ¢ > n; and s; > s,,. Then the subsequence {s,, }
approaches +oo and hence sup F = 4o00. Similarly, if S is not bounded below then

sup F = —oo. Conversely, if sup £ = +o00 then there exists a subsequence {s,, } such
that for every M, s,, > M +1 > M for some nj. The case for sup £ = —oo is similar.
Hence S is unbounded. O

Theorem 16. [Equivalence of limsup definitions.] Let S = {s,} be a sequence in
R, let S, = {sn,Sn+1,-..} and let E be the set of subsequential limits of {s,}. Let
L € [—00,00|. Then the following are equivalent:

(1) L=supkFE.

(2) L € E and for every x > L there is an integer N such that n > N implies
Sp < .

(3) L =lim, o supS,.

Furthermore, any L with these properties is unique.

Proof. We will show that (1) < (2) and (1) < (3). Suppose that L = sup F and
let x be a number with x > L. That L € sup F is clear. We can now assume that
L < +o0, for if L = +oo then there is no such x greater than L. Suppose that
sp, > x for infinitely many values of n; this forms a subsequence of {s,} consisting of
all s,, > x. Some subsequence of this subsequence converges to a value y, since s,,, > =
and sup F < +oo implies that {s,,} is bounded by Lemma . Then L>y >z > L,
which is a contradiction. Conversely, suppose that (2) holds for L and suppose that
L < sup E. Then choose = such that L. < z < sup F, and there is an integer N such that
n > N implies s, < x. Every subsequence of {s,} must have a limit no greater than
x < sup E' by Theorem and this contradicts the fact that sup E is the least upper
bound. Therefore L > sup E, and since L € E, L = sup E. This proves (1) < (2).

Let L = sup E so that (2) holds. Let ¢ > 0 be given. There exists an integer N
such that n > N implies s, < L +¢/2. Whenever n > N, supS,, < L + ¢/2 so that
sup S, — L < . Suppose that sup.S,, < L; we can choose x such that sup .S, < x < L.
Since every s, with £ > n has s, < x, every subsequence of {s,} must have a limit
no greater than « < sup E' by Theorem [I0] Since L is the least upper bound of FE,
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L < z < L which is a contradiction. Therefore 0 < sup S,, — L < ¢, showing that
lim,, o sup S,, = L. This proves (1) < (3). O

Theorem 17. [Exercise 3.5] For any two real sequences {a,} and {b,},

limsup (a,, + b,) < limsup a,, + limsup b,

n—o0 n—oo n—oo

provided that the sum on the right is not of the form oo — co.

Proof. 1f limsup,,_, . (a, + b,) = £0o then we are done. Otherwise, let

L = limsup (a, + b,),

n—0o0

L, = limsupa,,
n—oo

Lo = limsupb,.
n—o0
There is a subsequence {c,, } of {a,, + b, } that converges to L. For each n;, ¢,,;, = @, +by,
for some subsequences {a,,}, {bn,} so that L = a + b if we let a be the limit of a,, and
b be the limit of b,,. Then L = a + b < Ly + Ly, which proves the result. O

Theorem 18. [Exercise 3.7] If a,, > 0 for all n and > a, converges, then Z /I
converges. "

Proof. Let t, = >, _, @; clearly t,, > 0 for all n. Let b, = 1/k, and by the Cauchy-
Schwarz inequality,

where a = lim,,_,o a,, and b = lim,, o, 1/n%.

and hence ) @ converges. UJ

Thus {t,} must be a bounded sequence

Theorem 19. [Ezxercise 3.8] If Y a, converges and {b,} is monotonic and bounded,
then > a,b, converges.

Proof. Suppose that {b,} is monotonically increasing and let B be the limit of {b,}
so that b, < B for every n. Let C = B> a, — Y a,(B—1,). Since B —1b, — 0
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and {B — b,} is monotonically decreasing, we can apply Theorem 3.42 to deduce that
> an (B —b,) converges. Then

C=B) a,— Y a,(B-b,)
:Zanbn

converges. The case for {b,} being monotonically decreasing is similar. O

Theorem 20. [Ezercise 3.10] If > anz™ is a power series where infinitely many coef-
ficients are distinct from zero, then the radius of convergence is at most 1.

Proof. Suppose that the radius of convergence R > 1, i.e. Y a,7" converges for some

1 < v < R. By the root test, limsup,,_,., V/|a,y"| = limsup,,_, . v{/|as| < 1, which
means that limsup,_,. {/|a,] = L where L < 1. There exists some subsequence

S = { N/ ani|} that converges to L, and the neighborhood N;_ (L) contains infinitely
many points a; of S with 0 < {/|ax| < 1. But then infinitely many points a; have

0 < |ax| < 1, and thus infinitely many points are zero since each ay is an integer. This
is a contradiction, so the radius of convergence must not be greater than 1. OJ

Theorem 21. [Ezercise 3.11] Suppose that a,, > 0, s, = a1 + -+ + a, and that »_ a,
diverges. Then:

1) The series an diverges.
1+ J

G,
a a s an .
(2) For all Nk >1, 2 4o M0 > 2N g Z — diverges.
SN+1 SN+k SN+k Sn
3) Foralin, < 1 1 ay
or all n, — — — an — converges.
P82 T Su1 S s2 J
a
4 —=— sometimes converges and — always converges.
(>Zl+nan g Zl+n2an Y g
Proof. Suppose that _ ;¢ converges. Then lim, . 1~ = 0, and lim, ,ca, = 0

(this can be shown using an ¢ argument). There exists an integer N such that a, <1
whenever n > N, and furthermore since ) li"an converges, for any ¢ > 0 there exists

an integer M such that T - <¢€ /2 whenever n > m > M. Therefore whenever




n > m > max (M, N),

n a
6>2’;n1+ak
>2’i 1(?:1
> 2;: ag
k=m

and ) a,, converges. This shows that >

a1 : .
- diverges if » a,, diverges.

For N,k > 1,

SN4k — SN = GN41 T ANg2 + -+ ANtk
SN AN+1 AN+1 AN+
1-— = + + -+
SN+k SN+k SN+k SN+k
AN+1 AN+1 AN +k
< + + -+

SN+1 SN+2 SN+k

Suppose that ) 2 converges. Then there exists a IV such that whenever n+j > n > N,

n+j
Qy, 1
<y <
Sntj £ Sn 2

1 2n

so that for all j, 2s, > s,4;. But {s,} is not bounded since ) a,, diverges, and there
is some j such that s, ; > 2s,. This is a contradiction, so ) % cannot converge.

For the third inequality,

Sn
1<
Sn—1
Sn (Sn Sn—1
0 < ( )
Sp—1
Gp, Sn — Spn—1
— <
S SnSn—1
1 1
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For any € > 0, there is some N for which sy_; > % since {s,} is not bounded. Then

forallm >m > N,
“a,  w— 1 1
32 (o)

k=m "7k Sn—1
1 1
< -
Sm—1 Sn
1 1
< -
Sm—1 Sn,
<e¢€

since {s,} is monotonically increasing. Hence ) % converges.
n

The series | —%— may or may not converge. If a,, = 1 then the series does not con-

14+nan
verge, but if a,, = [n = m?] where |[...] is the Iverson bracket, then the series converges.
. an . an o 1 L .
The gerles > Tintar always converges since ; T = o < > — and the series on
the right hand side converges. 0

Theorem 22. [Ezercise 3.12] Suppose that a, > 0 and that ) a, converges. Let
Tn =13 o amn. Then:

a
1) If m < n then — —>1—— d —d
(1) If m < n then o +--- 4+ .y an Z iverges.

(2) (Vrn = \/Tn+1

Proof. If m < n then

T — Tn < Qm+ Q1 + -+ ap

Tn Qpm Am+1 Ay,

1- <y R
Tm T'm Tm Tm

A Am41 Gp,

- _|_ _|_ . + —

T'm T'm+1 Tn

Suppose that > i—: converges. Then there exists an integer N such that for all n >
m > N,

1
1__<ZE<§

so that for all n > m, 2r, > r,,. Since > a, converges, a, — 0 which means r, — 0.
Hence we can find an integer n such that r, < r,/2, which is a contradiction. This
shows that ) %= does not converge.
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To prove the second inequality,
4ry (1 — an) < 412 — da,r, +a’
= (2r, — ay)’
2T Tn — an, < 21, — ay,
a, < 2 (rn — \/HM)
f (Vrm = y/as1)

For any € > 0, there exists some integer N such that ry < (%)2 since 1, — 0. Then for
allm>m >N,

Z 22 (V7 = V/Te)
<2(\/m_\/rn+1)

<e

since {r,} is monotonically decreasing. Hence &= converges. O
n

Theorem 23. [Ezercise 3.13] The Cauchy product of two absolutely convergent series
converges absolutely.

Proof. Let > a, and )b, be two absolutely convergent series; we have > |a,| < M;
and )~ |b,| < M, for some My, Ms. Let ¢, = >} _ axb,—x. For all n,

n

3 el = >

< ZZ|%‘| |05

k
a;by_;
j=0

k=0 j—=0
= Y ayl by
0<j<k<n
< > agl bl
0<j.k<n

() ()

< MM,
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so that sequence of partial sums of > |c,| is bounded. Therefore ) ¢, converges abso-
lutely. O

Theorem 24. [Ezercise 3.20] Let {p,} be a Cauchy sequence in a metric space X where
some subsequence {p,,} converges to a point p € X. Then the sequence {p,} converges
to p.

Proof. Let € > 0 be given. There exists some N such that for all m,n > N, d (pp, pn) <
e/2. Also, there exists some K such that for all k£ > K, d(p,,,p) < €/2. Let j be
the smallest integer such that n; > max (N,ng). Then for all n > n;, d(p,,p) <
d (pn,pnj) +d (pn].,p) < ¢. This shows that p, — p. O

Theorem 25. [Exercise 3.21] If {E,} is a sequence of closed, nonempty and bounded

sets in a complete metric space X, if £, O E, 11, and if lim diam E,, = 0, then ﬂ E,

n—00
n=1

consists of exactly one point.

Proof. Let {p,} be a sequence where each p; is a point chosen from E;. Let ¢ > 0
be given. Since diam FE,, — 0, there exists some N such that diam F,, < ¢ whenever
n > N. Then for all m,n > N, d(pm,pn) < € since p,,,p, € Eyn. This shows that
{pn} is a Cauchy sequence, and since X is complete, {p,} converges. Suppose that
p ¢ E; for some i. Then p € Ef and since Ef is open, there exists some neighborhood
N of p with radius r such that N N E; = ). In fact, NN E; = () for every j > i since
FEy D Ey D ---. Since {p,} converges to p, there exists some M such that d (p,,p) <r
whenever m > M. Let k = max (i, M) and consider py; we have py € Ej but p, € N
since k > M, which means that py ¢ E; and py, ¢ Fj. This is a contradiction, so p € F;
for all i, i.e. () —, E, is nonempty. Furthermore, since diam E,, — 0, ()., E, must
consist of exactly one point. 0

Theorem 26. [Ezercise 3.22, Baire’s theorem] If X is a nonempty complete metric

space, and {G} is a sequence of dense open subsets of X, then ﬂ G, is not empty.

n=1

Proof. Let g; be a point in Gy and let Ny be a neighborhood of g; wholly contained in
G1. Let F4 be a neighborhood of g; such that E, C Ny Having constructed Fy, ..., E,
such that £y 2 --- D E,, and m C E; C @G, for each i, let g, be the center of
E,. Since G,y is dense in X, F, contains a point g,.1 € Gpi1. Let E, 1 be a
neighborhood of ¢,1 such that E,,; C E,. We can continue this process to obtain a
sequence £y O Fy O ---. By Theorem , there is exactly one point x € (), E,. But
we have E; C G; for each i, which means that € (02, G,, and therefore (77, G,, is
not empty. 0
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Theorem 27. [Ezercise 3.23] Let {p,} and {q,} be Cauchy sequences in a metric space
X. Then the sequence {d (pn,qn)} converges.

Proof. Let € > 0 be given. There exists, by taking a maximum, an integer N such that
for all m,n > N, d (pm,pn) < /2 and d (Gm, gn) < £/2. Then

d (Pns @n) < d (P, Pm) + d (P, Gm) + d (G, Gn)
d (Pn, @n) — d (Pms @m) < d (Pn, Pm) + d (G, gn)

and similarly,

(PmsPn) + d (Pns @n) + d (g0, Gm)

d (Pm, qm) < d
d (P Pn) + d (Gn, Gm) -

<
d (prm Qm) - d (pm Qn> S

This shows that

\d (Pr, @n) — d (Pms @) | < d(DimsDn) + d (qn, Gim)
<€

which means that {d (p,, ¢,)} converges. O
Theorem 28. [Erxercise 3.24] Let X be a metric space.

(1) Call two Cauchy sequences {pn},{q.} in X equivalent if lim, oo d (pn, q) = 0.
This is an equivalence relation.

(2) Let X* be the set of all equivalence classes obtained by the above equivalence
relation. If P € X*, Q € X*, {p.} € P, {q¢.} € Q, define A(P,Q) =
lim,, o0 d (Pn, qn). The number A (P,Q) is unchanged if {p,} and {q,} are
replaced by equivalent sequences, and hence that /A is a distance function in
X*.

(3) The metric space X* is complete.

(4) For each p € X, there is a Cauchy sequence all of whose terms are p; let P, be
the element of X* which contains this sequence. Then A (P,, P,) = d(p,q) for
all p,q € X.

(5) Let ¢ : X — X* be given by p — P, where P, is the element of X* which
contains a sequence with all terms equal to p. Then ¢ (X) is dense in X*, and
if X is complete, then ¢ (X) = X*.

(6) The completion of Q is R.

Proof. 1t is obvious that that the relation is reflexive and symmetric. Let {p,},{¢.}, {rn}
be sequences such that lim,, o d (pp, ¢n) = 0 and lim, o d (¢n, ) = 0. Let € > 0 be
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given. There exists, by taking a maximum, an integer N such that for all n > N,
d (pn,qn) < /2 and d (¢n, 1) < €/2. Then

d (pna Tn) <d (pn7 Qn) +d (Qn + Tn)
<e,

which shows that lim,,_,o, d (p,,,) = 0. Therefore the relation is transitive.

Let Pe X*, Q€ X* {p,} € P, {qg.} € Q. Let {p/,} € P and {¢,} € Q be sequences
equivalent to {p,} and {g,} respectively. We must show that lim, o d (pn,qn) =
lim,, o d (pl,, ¢,,). Since both limits exist, it suffices to prove that

Tim [d (pn, gn) — d (9}, ;)] = 0.

From the equivalence of the sequences, we have for any € > 0 an integer N such that
for all n > N, d(p,,p),) < e/2 and d(qn,q,) < £/2. Then

d (pn> Gn) < d(pn,p,) +d (P, q,) +d(gn, q,,)

d (pns qn) — d (D)), 4%) < d(pnsply) + d(qn, ql,)
< €

and by symmetry (compare Theorem 27), |d (py, ¢n) — d (P}, q},)| < €. Therefore
Tim [d (pn, gn) = d (P, 4,)] = 0,

which proves that A : X* x X* — R is well-defined. It is simple to verify that A is a
metric in X*.

Let {P,} be a Cauchy sequence in X*; write P,, = [{pn.m}] where {p,.} is a sequence
in m. For any € > 0 there exists some N such that for all m,n > N, A (P,,, P,) < e.
Incomplete.

Let p,q € X. Then A (P,, P,) = lim, 00 d (P, ¢») = d (p, q) by definition.

Let Y = ¢(X) and let P = [{px}] € X* (where {px} is a representative from the
equivalence class), supposing that P ¢ Y. Let N be a neighborhood of P with radius r.
There exists some M such that for all m,n > M, d (py,,pn) < 7. Let Q = ¢ (py) € Y.
We want to show that @ € N; we have d (p,, py) < r whenever n > M, and therefore

A (P,Q) = lim d(pp,py) <.

This proves that ¢ (X) is dense in X*. Second part incomplete. O
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CHAPTER 4. CONTINUITY

Theorem 29. Let X CR, f,g: X — R and let a be a limit point of X. If f(z) < g(z)
for all x in a neighborhood of a, then

lim f(z) < lim g(x),

Tr—ra T—a

provided that both limits exist.

Proof. Let N be a neighborhood of a with radius r such that f(z) < g(x) for all
x € N. Suppose that lim, ,,[g(x) — f(z)] = L < 0. Then there exists a 6 > 0 such that
lg(x) — f(x) — L] < —L and g(z) < f(z) whenever 0 < |z — a| < 0. Choose a point x
such that 0 < |z — a| < min(d, r); this results in a contradiction. O

Corollary 30. Let f,g:[a,00) — R. If f(x) < g(x) for all x > a, then
lim f(z) < lim g(z),
T—r00 T—r 00

provided that both limits exist.

Theorem 31. [Theorem 4.8/ A mapping f of a metric space X into a metric space Y
is continuous on X if and only if f~1 (V') is open in X for every open set V in'Y.

Proof. Suppose that f is continuous on X. Let V be an open set in Y and let p €
f7H (V). There exists a neighborhood N of f (p) with radius r wholly contained in V.
Since f is continuous, there exists a § > 0 such that dy (f (p), f (z)) < r whenever
r € X and dy (p,z) < §. Therefore, Ns(p) is an open set of X wholly contained in
f~1 (V). This shows that f~! (V) is an open set. Conversely, suppose that f~! (V) is
open in X for every open set V in Y. Let p € X and let € > 0 be given. Let V be a
neighborhood of f (p) with radius ¢ so that f~' (V) is open in X. Since p € f~! (V),
there exists a neighborhood N of p with radius § such that N is wholly contained in
f7Y(V). Then for all z € X with dx (p,z) < §, we have dy (f (p), f (z)) < € since
x e f71(V)and f(x) € V. This shows that f is continuous on X. O

Theorem 32. [Examples 4.11] The map x — |x| is continuous.

Proof. Let € > 0 be given and let z,y € R* be arbitrary. Whenever |z —y| < ¢, we
have ||z| — |y|| < | — y| < &, which completes the proof. O

Theorem 33. [Exercise 4.2] Let f be a continuous map from a metric space X to a
metric space Y. Then for every set E C X,

f(B) € [(E).

Furthermore, this inclusion can be proper for certain functions.
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Proof. Let p € f (E); we must show that either p € f (E) or p is a limit point of f (E).
If there is a z € E with p = f (x), then we are done. Otherwise, p ¢ f (F), and we can
choose = with p = f (x) such that x is a limit point of E. Let N be a neighborhood of p
with radius 7. Since f is continuous, there exists a 0 > 0 such that for all y € Ns (z) we
have f (y) € N. Since z is a limit point of F, there exists a z in N (z) with z € E so
that f (z) € N. Furthermore, f (2) # p since we assumed that p ¢ f (E). This shows
that p is a limit point of f (F).

The inclusion can be proper, as in the following example. Let f : (0,1) — R be defined
by @+ a; then f ((0,1)) = (0,1) # [0,1] = F((0, 1)) =

Theorem 34. [Ezercise 4.3] Let [ be a continuous map from a metric space X to R.
Let Z(f) be the set of all p € X such that f (p) =0. Then Z(f) is closed.

Proof. By definition Z (f) = f~'({0}). Since {0} is closed and f is continuous, Z (f)
must be closed. O]

Theorem 35. [Exercise 4.4] Let f and g be continuous mappings from a metric space
X to a metric space Y, and let E be a dense subset of X. Then

(1) f(E) is dense in f(X), and
() 19 (p) = £ (p) for all p € E then g (p) = f (p) for all p € X.

Proof. We know that £ C X, and since E is dense in X, X C E. By Theorem , we
have f (E) = f(X) C f (F), which shows that f (E) is dense in f (X).

To prove (2), let p € X. Since E is dense in X, either p € F or p is a limit point
of E. If p € E, then from the assumptions we are done. Otherwise, fix ¢ > 0.
Since f is continuous, there exists a d; > 0 such that for every x € N, (p) we have
f(x) € N.(f (p)). Similarly, there exists a d2 > 0 such that for every x € Ny, (p) we
have g (z) € N. (g (p)). Let 6 = min (d1,92). Since p is a limit point of E, there exists
a point z € N (p) with z € E. Then f(z) € N.(f (p)) and f(2) = g(2) € N: (9 (p))
so that

d(f(p),9(p)) <d(f(p),f(2)+d(f(2),9(p)

< 2e.
Since € was arbitrary, f (p) = g (p). O

Theorem 36. [Exercise 4.6] Let E be a subset of R. Define the graph of a function
f:E — Rtobetheset{(x, f(x)) |z € E}. If E is compact, then a function f : E — R
18 continuous if and only if its graph is compact.
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Proof. Let G be the graph of f and let ¢ : E — G be given by =z — (z, f (z)).
Clearly, g is a bijection by definition. Suppose that f is continuous. Since x — =z
is continuous, by Theorem 4.10 we have that ¢ is continuous. By Theorem 4.14, the
image of g is compact, which proves the result. Conversely, suppose that the graph G
is compact. Let V be a closed set in R; we want to show that f~1 (V) is closed. Let p
be a limit point of f~! (V). By Theorem 3.2, there exists a sequence {p,} in f~! (V)
that converges to p. Consider the sequence {(p,, f (pn))}; since G is compact, some
subsequence {(pn,, f (pn;))} converges to some (p,y) € G, and by definition, y = f (p).
Now {f (pn,)} is a sequence in V, and since V is closed and the sequence converges
to f(p), we have f(p) € V. Therefore p € f~'(V), which shows that f~! (V) is
closed. OJ

Theorem 37. [Ezercise 4.8] Let E be a bounded set in R and let f : E — R be a
uniformly continuous function. Then f is bounded on E. If E is not bounded, then the
conclusion does not necessarily hold.

Proof. We can choose M, N so that M < x < N for all x € E. Since f is uniformly
continuous, there exists a § > 0 such that |f (z) — f (y)| < 1 whenever |z —y| < 0.
Choose n so that N — M +§ > (n+1)0 > N — M. For every x € E, there is an integer
k with 0 < k < n such that |M + kd — x| < 6. Then |f (M + kd) — f (x)| < 1 which
means |f (z)| <1+ |f (M + kd)|. Now take

P = min |f (M + kd)|

0<k<n

where k= 0,1,...,n; we have |f (z)| < 1+ P for all x € E and hence f is bounded on
E.

To show that £ must be bounded for the conclusion to hold, choose f (z) = x, which
is uniformly continuous, and £ = R. UJ

Theorem 38. [Ezercise 4.9] Let f : X — Y. Then the following statements are
equivalent:

(1) f is uniformly continuous.
(2) For every e > 0 there exists a 6 > 0 such that diam f (E) < ¢ whenever E C X
and diam F < 4.

Proof. Obvious. 0

Theorem 39. Let X andY be metric spaces. Let f: X — Y be a continuous function.
If {s,} is a sequence in X that converges to s, then {f (s,)} converges to f(s).

Proof. Let € > 0 be given. Then there exists a 6 > 0 such that d(f(s),f(z)) < ¢
whenever d(s,z) < §. Since s, — s, there exists a N such that for all n > N we
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have d (s,s,) < 8. Then d(f (s), f(sn)) < € whenever n > N, which completes the
proof. O

Theorem 40. Let X,Y,Z be metric spaces. Let f : X — Y be a function with
lim, ., f(x) =bandlet g: Y — Z be continuous at b. Then lim,_,, g(f(x)) = g(b).

Proof. Let ¢ > 0 be given. Choose 6 > 0 such that dz(g(z),g(b)) < ¢ whenever
dy(z,b) < 6, and choose v > 0 such that dy(f(x),b) < 6 whenever 0 < dx(x,a) < 7.

Then dz(g(f(x)),9(b)) < € whenever 0 < dx(x,a) < 7. O
Theorem 41. Let X and Y be metric spaces. Let f: X — Y be a function with

lim f(xz) = L.

r—a

If F is any neighborhood of a and g : E — F is a continuous bijection where g~'(a) is
a limit point of E, then
lim f(g(z)) = L.

z—g~!(a)
Proof. For every € > 0, there exists a § > 0 such that d(f(z),L) < ¢ whenever 0 <
d(x,a) < 4. Since g is continuous on F, there exists a v > 0 such that d(g(x),a) < ¢
whenever d(z,g7'(a)) < . Then for all z with 0 < d(z,¢97'(a)) < v we have 0 <
d(g(x),a) < 4, noting that d(g(z),a) = 0 if and only if d(x, g (a)) = 0, since g is a
bijection. Therefore, d(f(g(x)), L) < €, which completes the proof. O

Theorem 42. [Ezxercise 4.10] Let X be a compact metric space and let Y be a metric
space. If f: X —Y is a continuous function, then f is also uniformly continuous.

Proof. Suppose that f is not uniformly continuous. Then there exists a € > 0 such that
for every 6 > 0 we have some F C X with diam E < ¢ such that diam f (E) > & > ~,
where 7 = ¢/2. Let §, = 1/n; for each n we have points p,,q, € X such that
dx (Pn, qn) < 0, and dy (f (pn), f (¢n)) > 7. Since X is compact, some subsequence
{pn,} converges to a point p € X. By Theorem , the sequence {f (p,,)} converges
to f(p). Similarly we have g,, — p and f (¢,,) — f (p) upon application of Theorem
and Theorem Now there exist integers M, N such that dy (f (p), f (pn,)) < 7/2
whenever n; > M, and dy (f (p), f (¢n;)) < 7/2 whenever n; > N. Taking n; to be an
integer with n; > max (M, N), we find that

dy (f (pn.) , [ () < dy (f (), | (P)) +dy (f (P), f (gn,))
<7
which is a contradiction. O
Theorem 43. [Ezercise 4.11] Let X and Y be metric spaces. If f: X — Y is a uni-

formly continuous function, then {f (x,)} is a Cauchy sequence in'Y for every Cauchy
sequence {x,} in X.
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Proof. Let {x,} be a Cauchy sequence in X. Let £ > 0 be given. Since f is uniformly
continuous, there exists a 0 > 0 such that d (f (z), f (y)) < € whenever d (z,y) < 0.
Since {z,} is a Cauchy sequence, there exists a N such that d (z;,z;) < 6 whenever
i,j > N. Then for all 4,7 > N we have d(f (z;), f (x;)) < e, which completes the
proof. O

Theorem 44. [Ezercise 4.12] Let X,Y,Z be metric spaces. If f: X - Y andg:Y —
Z are uniformly continuous functions, then h = g o f is uniformly continuous.

Proof. Let ¢ > 0 be given. There exists a 6; > 0 such that dz (g (x),g(y)) < €
whenever dy (z,y) < 6;. There also exists a d; > 0 such that dy (f (z), f(y)) < &
whenever dx (x,y) < d2. Then for all z,y with dx (z,y) < d2 we have

dy (f (z), f(y)) <o
and

dz (g (f(x)),9(f W) =dz (h(x),h(y)) <e.
UJ

Lemma 45. Let X,Y be metric spaces and let f : X — Y be a uniformly continuous
function. Let {x,},{yn} be sequences in X that both converge to x € X. If f (z,) =y
and f (yn) — z, then y = z.

Proof. Fix ¢ > 0. Since f is uniformly continuous, there is some 6 > 0 such that
d(f(a),f (b)) < e/3 whenever d(a,b) < . For some N we have d(z,x,) < §/2 and
d(z,y,) < 6/2 whenever n > N so that
d(xn,yn) < d(xn,z)+d(x,yn,)

<0
and therefore d(f (z,,), f (yn)) < €/3 whenever n > N. Furthermore, there exist
integers Ny, Ny such that d (y, f (x,)) < €/3 whenever n > Ny and d(z, f (yn)) < /3
whenever n > Nj. Setting n = max {NN, Ny, N}, we have

d(y,z) <d(y, f (zn)) +d(f (xn), 2)
< d(y, [ (xn) +d(f (@), f(yn) +d(f (), 2)

< E.
Since ¢ was arbitrary, y = z. O

Theorem 46. [Ezercise 4.13] Let E be a dense subset of a metric space X, and let
f+ E — R be a uniformly continuous function. Then f has a continuous extension
from E to X.
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Proof. We will define g : X — R as follows. Let z € X. Since F is dense in X, there
exists a sequence {z, } in E that converges to x. Then {xz,} is a Cauchy sequence, and
by Theorem {f (x,)} is a Cauchy sequence in R. By Theorem 3.11, there exists
some y € R such that f(z,) — y. We may then define g (z) = y in this manner,
noting that it is well-defined by Lemma (45 Now we will prove that g is continuous.
Let ¢ > 0 and # € X be given. Since f is uniformly continuous, there exists a § > 0
such that d (f (z), f (z')) < /3 whenever d(z,z') < 0. As in our construction of g,
there exists a sequence {x,} in E that converges to x, while f (z,,) — y for some y € R.
Then there exists a M such that for every n > M we have d (y, f (x,)) < £/3. Now
let 2’ € X with d(z,2") < 0. There exists a sequence {z/,} in E that converges to 2/,
while f (z])) — o for some y' € R. Then there exists a N such that for every n > N
we have d (v, f («]))) < £/3. Now take n = max (M, N), and then

d(f (), f (") =d(y.y)
< d(y, f(zn)) +d(f (@n), f(20) +d (f (2,),9)

<eE.

This shows that g is a continuous extension of f from E to X. Note that we may
replace the range of f with any complete metric space. O

Theorem 47. [Exercise 4.14] Let I = [0,1] be the closed unit interval. If f: 1 — I is
a continuous function, then f (x) = x for at least one x € I.

Proof. Let g : [0,1] — R be defined by g (z) = f(z) —z. If f(0) =0o0r f(1) =1
then we are done. Therefore, we may assume that f(0) > 0 and f (1) < 1. We have
g(0) = f(0) > 0 while g (1) = f (1) — 1 < 0. By the intermediate value theorem, there
exists a x € (0,1) such that g (z) =0, i.e. f(z) = . O]

Lemma 48. If a function f : R — R is not monotonic, then there exist points p1, pa, p3
such that p1 < ps < ps, and either f (p1), f (ps) < f (p2) or f(p1), f(p3) > f (p2).

Proof. If f is not monotonic, then there exist points xi,y;, xs2,y2 such that x; < yi,
f(x1) < fn), z2 < yo, f(22) > f (y2). We can construct a list of all possible orderings
to prove the result. O

Theorem 49. [Ezercise 4.15] Every continuous open map from R to R is monotonic.

Proof. Let f : R — R be a continuous open map. Suppose that f is not monotonic. By
Lemmal[d8] there exist points py, pa, ps such that p; < p» < p3, and either f (p1), f (ps) <
f(p2)or f(p1), f(p3) > f(p2). Assume without loss of generality that f (p1), f (p3) <
f(p2), and let M = sup f ([p1,ps]). Then by Theorem 4.16 there exists a point z €
[p1,p3] such that f(z) = M. Let V. = (p1,p3); then x € V since f (p1), [ (p3) <
f(p2) < M. Since f is an open map, f (V) is open, and there exists a neighborhood
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N of f(x) with radius r such that N C f (V). Then f (z) +7/2 € f(V), which means
that f (2') > M for some 2/ € V. This is a contradiction, so f must be monotonic. [

Theorem 50. [Exercise 4.17] The set of points at which a function f : (a,b) — R has
a stmple discontinuity is at most countable.

Proof. Let E the set of all € (a,b) such that f(z—) < f(x+). For each z € E,
associate with z a triple (p,q,7):

(1) Choose p € Q so that f(z—) <p < f (z+).

(2) There exists a § > 0 such that |f (¢) — f (z—)| < p — f (xr—) whenever x — 0 <
t < x. Choose ¢ € Q so that x — § < ¢ < . Then whenever a < ¢ <t < x we
have f (t) < p.

(3) There exists a 6 > 0 such that |f (z+) — f ()| < f(x+) — p whenever z < t <
x4+ 6. Choose r € Q so that x < r < x 4+ . Then whenever x <t <r < b we
have f (t) > p.

Now we must prove that each triple is associated with at most one x € E. Let x,y €
such that x,y are both associated with the triple (p, q,r). We obtain four inequalities:

f(t) < pwhenevera < q<t<uz,
f(t) > p whenever x <t <r <b,
f(t) < pwhenevera < g<t<uy,
f(t) > pwhenevery <t <r <b.

Suppose that * < y. We can choose u with + < u < y. Since x < u < r, we
have f(u) > p, and since ¢ < u < y, we have f(u) < p, which is a contradiction.
Similarly, we obtain a contradiction if > y. Therefore x = y. Let F' be the set of
all x € (a,b) such that f(z—) > f(x+); we can again associate with = € F' a triple
(p,q,r). For the last kind of simple discontinuity, let G be the set of all x € (a,b) such
that f(z—) = f(x+) but f(z) # f(z—), f (x+). For each x € G, associate with x a
tuple (q,r) where ¢, r are defined in a similar way to the triples (p, ¢, r) associated with
E. The sets E, F, G are all countable, so the result follows. OJ

Theorem 51. [Ezercise 4.19] Let f : R — R be a function with the following property:
if f(a) <c< f(b), then f(x) = c for some x € (a,b). Also, for every r € Q, the set
of all x with f (x) =r is closed. Then f is continuous.

Proof. Suppose that f is not continuous. Then there exist € > 0 and = € R such that
for all § > 0 we have |z —y| < ¢ and |f (z) — f (y)| > € for some y. Put 6, = 1/n
to form a sequence z, — x while |f(z)— f(z,)| > ¢ for all n. Either x, has a
infinite number of points with f (z) < f(x,), or an infinite number of points with
f(x,) < f(x). Assume without loss of generality that the former holds, so that there
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exists a subsequence x,, — x with f (x) +¢ < f (z,,) for all n. Let r be some rational
number with f (z) <r < f(z) 4+ €. For all n we have f (z) <r < f(z,); by the given
property of f, there exists a ¢, € (z,x,) with f(t,) = r, and with the sequence t,
converging to x since x,, — x. Let E be the set of all a with f (a) = r. Since t,, — x
and f (t,) = r, we have that z is a limit point of E. But f (z) < r, so E is not closed.
This is a contradiction, and therefore f must be continuous. O

Theorem 52. [Ezxercise 4.20] If E is a nonempty subset of a metric space X, define
the distance from x € X to E by

pi () = inf d (2, 2).

Then:

(1) pg (x) =0 if and only if v € E.
(2) pe is a uniformly continuous function on X.

Proof. Suppose that pg (z) =0 and x ¢ E. Let N be a neighborhood of x with radius
r; by definition of the infimum, N contains a point z € E with d (x, z) < r (and z # ).
Hence z is a limit point of E. Conversely, suppose that pg (z) = L with L > 0. Clearly
x ¢ Esince d (x,x) = 0. Also,  is not a limit point of E since the neighborhood Ny, (x)
contains no points in E. Therefore x ¢ E.

Fix z,y € X. Then for all z € F we have
pe(z) < d(z,2) < d(z,y) +d(y,2).

Therefore d (y, z) > pg (x)—d (x,y) for all z, which means that pg (y) > pr ()—d (z,y).
Similarly, pg (z) > pe (y) — d(z,y), and thus

lpe (7) —pe (y)| < d(z,y).

Whenever d (z,y) < € we have |pg () — pg (y)| < &, which shows that pg is uniformly
continuous. O

Theorem 53. [Ezxercise 4.21] Let K and F' be disjoint sets in a metric space X, with
K compact and F closed. Then there exists a 6 > 0 such that d (p,q) > 6 for allp € K
and q € F.

Proof. Consider the map pr : K — R defined in Theorem . Suppose that pg (x) =0
for some x € K. Then by Theorem , x € F = F, which is a contradiction. Therefore
pr(x) > 0 for all x € K. Let D = pr (K); since K is compact, D is compact, and
additionally D is closed by the Heine-Borel theorem. Since 0 € D¢ and D¢ is open,
there exists a neighborhood N of 0 with radius » > 0 such that N C D¢ Therefore,
pr (x) > r for all x € K, and the result follows. O
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Theorem 54. [Ezercise 4.23] If f : (a,b) — R is a convex function and a < s <t <
u < b, then

(*)

and f is continuous. Additionally, every increasing convex function of a convex function
18 CONYVEL.

fO = f)  fl)=fls)  flw)=F)

t—s uU— S8 u—t

Proof. We have

Then
<= (1222 7
FO) () T~ F (9
. t—s uU— S
ro< =t (1- 220 fw
[0 -1 fW=1(0)

Let = € (a,b) and choose 0 so that [x — 0,2+ 0] € (a,b). Let y € (x — 5,2z +9) \ {z}.
We want to show that the following inequality holds:

fl)=fx=0) _f)=fly _ fle+9)—[f(z)

) - -y 5 '

If y < z, then applying @ onzr—0<y<zxandy <z <z+ o produces the result.
Similarly, if y > x then applying @ onr—0<x<yand xr <y < x+ 0 produces
the result. Then for all y € (x — 0,z +9), |f () — f (y)| < C |z — y| for some positive
constant C. This proves that f is continuous.

Let g : (¢,d) — R be an increasing convex function where the range of f is a subset of
(¢,d). Then for all z,y € (a,b) and A € (0,1),

fOz+ 1 =Ny) <Af(2)+ (1 =N)f(y)
g(fAz+1=Ny) <gAf(x)+1=X)f(y))
<Ag(f(x)+ 1 =Ng(f(y),
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which shows that g o f is convex. U

Definition 55. Let I be an interval in R. A function f : I — R is midpoint convex
if

; (x;y) SGES(0

for all z,y € I. A binary sequence is a sequence {b,} where every b, is either 0 or 1.

Lemma 56. Let f:[0,1] — R be a midpoint convex function and let {b,} be a binary
sequence. Let N\, = > ,_ bp27". Then

Jn) S A f(1) + (1= An) f(0).

Proof. We first use induction on n to prove that

f (Z bk2—'f) <3 F27F + F0)2
k=1 k=1
for any binary sequence {b,}. If n =1 and b; € {0,1}, then

(%)= (%) = 5700+ 50

since f is midpoint convex. Otherwise, assuming the statement for n — 1, we have for
any binary sequence {b,},

f (i b,g’f) =f (1 b, +ibk2’f+1])

k=1 2 k=2
L + 27 (S b
9/ V1T g - k

n

100+ 5 3 T2 4 02

n

= fO)27 4 F0)27,

k=1

IN

IN
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which proves the statement for all n. We now compute

1—An:§:2—k—zﬂ:bk2—k
—Zl—ka L Z 27k

k=n+1
n

=) (1—b)2 2
k=1

so that

Anf(1) + (1 - Z bk2k+2f )(1 —b)27F 4 £(0)2~

3

= f(bk)Q_k +f(0)2”

since by, is always 0 or 1, and f(1)by +f(0)(1 —by) is always equal to f (by). This proves
the result. H

Theorem 57. [Exercise 4.24] Let f : (a,b) — R be a continuous, midpoint convex
function. Then f is convex.

Proof. We first prove a smaller result for any continuous, midpoint convex function
g :[0,1] - R. Let A € (0,1) and let {b,} be a binary expansion of A so that if
Ao =Y p_, bk27% then A, — A\. By Lemma , we have g(A,) < Ag(1)+(1—X\,)g(0),
and by Theorem [39] g(\,;) — g()\). Therefore by Theorem

(*) g(A) < Ag(1) + (1 = A)g(0).

For the general case, let z,y € (a,b) and let A € (0,1). If x = y, then we are done.
Otherwise, assume without loss of generality that z < y. Define g : [0,1] — R by
g(A) = f(Ay + (1 — N)z). For any Ay, A2 € [0, 1], we have

J(U) g (o i)

_y (WJ + (1= da)a] + Doy + (1 = AQ)x})

2
g(A1) +g(A2)
R E—

<



25

which shows that ¢ is midpoint convex. By @,

g(A) < Ag(1) + (1 = A)g(0)
fOy+ (1 =Nz) <Af(y) + (1 =N f(=)
for all A € (0,1). This proves that f is convex. O

Theorem 58. [Ezercise 4.26] Let X,Y,Z be metric spaces with Y compact. Let f :
X =Y such that f(X) C Y, and let g : Y — Z be a continuous, injective function.
Let h: X — Z be defined by h(x) = g(f(x)). Then:

(1) If h is uniformly continuous, then f is uniformly continuous.
(2) If h is continuous, then f is continuous.

Proof. Suppose that h is uniformly continuous. Since ¢ is continuous and Y is compact,
g(Y) is compact. Since g is injective, f(z) = g '(h(z)), and ¢! : g(Y) — Y is
continuous by Theorem 4.17. But g(Y’) is compact, so by Theorem 4.19, g~ is uniformly
continuous. Applying Theorem (44| proves that f is uniformly continuous.

1 1

Suppose that A is continuous. Again, f = g~ o h, and ¢~* is continuous by Theorem
4.17. Applying Theorem 4.7 proves that f is continuous. 0

CHAPTER 5. DIFFERENTIATION

Lemma 59. Let I be an interval and let f : I — R be a function differentiable at x.
Then there exists a function ¢ : I — R such that

f@) = f(z) = (t —2)[f'(x) + o(t)]
forallt € I and
lim ¢(t) = ¢(0) = 0.

t—x

Proof. Define

o) =1 it =z,
- f(t%:j:(x) — f'(x) otherwise.
This function clearly satisfies the desired properties. 0

Theorem 60. Let I, 15 be intervals. Let f : I; — R be a continuous function and
let g : Iy — R be a function where I contains the range of f. Define h : Iy — R by
hz) = g(f(x)). If f is differentiable at some point x € I and g is differentiable at

f(@), then I (x) = ¢'(f(2))f'(x).
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Proof. Let y = f(x) for convenience. By Lemma there exist functions ¢, ¢ with
lim 1 (£) = lim 6(s) = 0
such that
f@) = fx) =t —2)[f' () + du(t)
9(s) = g(y) = (s = y)lg'(y) + P2(s)
whenever t € I; and s € I5. In particular, by setting s = f(¢) we have for all t € I,
h(t) = h(z) = g(f(t)) — g(f(z))
= (f(t) = f(@)]g'(f(x)) + d2(f (1))]
= (t = 2)[['(x) + &1 (D]lg'(f (2)) + d2(f (1)),

)
]

Y

so that

) MO =) _110) 4 61 (09 (@) + o FO))

t—x
if t # x. By Theorem [40],
lim 6ol /(1)) = 62(/(2)) = 0

since f is continuous at x and ¢, is continuous at f(x), so taking t — x in @ completes
the proof. N

Theorem 61. [Exercise 5.1] Let f be defined for all real z, and suppose that
[f(z) = f)l < (@ —y)°

for all real x and y. Then f is constant.

Proof. The condition on f is that

f(x) — fly
@ =W 1,y
r—=1y
for all z,y € R. Then f'(z) = 0 for all z, and by the mean value theorem, f is
constant. O

Theorem 62. [Ezercise 5.2] Let f : (a,b) — R with f'(x) > 0 for all x € (a,b). Then:

(1) f 1s strictly increasing in (a,b), and
(2) If g is the inverse function of f, then g is differentiable and

for all z € (a,b).
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Proof. Let x,y € (a,b) with x < y. By the mean value theorem, there exists a ¢ € (z,y)
such that f(y) — f(z) = (y — x)f'(¢) > 0, and therefore f(z) < f(y). This shows that
f is strictly increasing in (a,b). Let x € (a, b); we want to show that g is differentiable
at f(x). Since f is differentiable at x, we have

L 10 = 1)

t—z t—=x
By Theorem 4.4, since f'(z) > 0,

= f'(z).

t— 1
lim L =

v f(t) — f(z)  f(x)
By Theorem [41] applied with g, we have

o 90 =gl @) 1

i@ t— f() f'(z)
and therefore ¢'(f(x)) = 1/f'(x). O

Theorem 63. [Ezercise 5.3] Let g : R — R with a bounded derivative |¢g'| < M. Fix
e >0 and let f(zr) =x+eg(x). Then f is injective if € is small enough.

Proof. Take e < 1/M. Let z,y € R such that f(x) = f(y), i.e. z+¢eg(x) =y +eg(y),

so that
g(x) —gly)| 1
T —y g
Suppose that z # y; then by the mean value theorem, there exists a z € (z,y) such
that

9(x) —g(y)| _ 1
|g/(z)|:‘ () — 9( )‘z—SM.
r—y €
This is a contradiction since 1/e > M, so x = y whenever f(z) = f(y). O

Theorem 64. [Erxercise 5.4] If Cy, ..., C,, are real constants such that

C Ch Cy
Cot — 4+ 4+ —— + =0,
2 n n+1

then the equation
C() + Cll' + -+ Cn_ll'n_l + Cnl’n =0

has at least one real root between 0 and 1.

Proof. Let

-1 n xn+l

o Cl Cn Cn
f(x)—00x+7x+---+ - e
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so that f(0) = f(1) = 0. By the mean value theorem, there exists a z € (0,1) such
that

f/(ZE) = C() + Cll’ + -+ Cn_lxn_l + Cnl'n = 0.
0

Theorem 65. [Exercise 5.5] Let f be defined and differentiable for every x > 0, with
f'(x) =0 as x — +o0. Let g(x) = f(x+ 1) — f(z). Then g(x) — 0 as v — +00.

Proof. For every € > 0, there exists a M > 0 such that |f'(z)| < ¢ whenever x > M.
Then for all x > M, applying the mean value theorem to f gives a ¢ € (x,z + 1) such

that f(z +1) — f(z) = f'(¢). Since ¢ > M, we have |f(x + 1) — f(x)| = |f'(¢)| < e,
which proves that g(z) — 0 as * — 400. O

Theorem 66. [Ezercise 5.6] Let f be a real function. Suppose that

f s continuous for x > 0,
f'(x) exists for x > 0,

(0) =0,

18 monotonically increasing.

be defined for all x > 0. Then g is monotonically increasing.

Proof. The derivative of g is given by
zf'(z) — f(x)

g'(x) = o

?

so we want to prove that = f'(z) — f(x) > 0 for all x > 0. For all > 0, by the mean
value theorem, there exists a ¢ € (0, z) such that

f(z)
DY _ pe) < )
since ¢ < x and f’ is monotonically increasing. This proves the result. O]

Theorem 67. [Exercise 5.7] Suppose that f'(x) and ¢'(x) exist, ¢'(x) # 0, and f(z) =
g(x) =0. Then
S f(x)
lim —= = .
e g(t) o)
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Proof. Since f'(x) and ¢'(x) exist, we have

f) = fx) S0

. . — !
L A
t) — t
i 20 9@y 9O
t—x t — X t—x t — X
Since ¢'(z) # 0, by Theorem 4.4 the result follows. O

Theorem 68. [Ezercise 5.8 Suppose that f' is continuous on |a,b] and € > 0. Then
there ezists a 0 > 0 such that

f(t) — f(=)
t—=x

—f'(x)] <e

whenever 0 < |t — x| < § and t,x € [a,b].

Proof. By Theorem 4.19, f’ is uniformly continuous since [a, b] is compact. There exists
a 0 > 0 such that |f'(t) — f'(x)| < € whenever |t — x| < 0. Then for all ¢,z € [a, b] with
0 < |t — z| < §, by the mean value theorem, there exists a u € (¢, ) such that

TOZT0 - ) =0,
and
f(ti : i(x) . f’(:)ﬁ)‘ < w _ f’(u) + |f’(u) . f’(c)|
<e.

O

Theorem 69. [Ezercise 5.9] Let f : R — R be a continuous function such that f'(x)
exists for all x # 0 and f'(x) — 3 as x — 0. Then f'(0) exists.

Proof. For every € > 0 there exists a 6 > 0 such that |f'(z) — 3| < ¢ whenever 0 <
|z| < §. For all z with 0 < |z| < ¢, by the mean value theorem, there exists a ¢ € (0, x)
such that

(x) = 1)
fe=10)_,

X

= f'(c)

’=UWﬁ—ﬂ<a
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Theorem 70. [Ezxercise 5.11] Suppose that f is defined in a neighborhood of x, and
suppose that f"(x) exists. Then

o S B+ (= b) = 2 (@)

h—0 h2

— f”(l').

Proof. Since f”(x) exists, we have

f'x+h) = f'(x)

f"(z) = lim

h—0 h
o S@ = fa =)
h—0 h

where the second limit is obtained by applying Theorem 41| with the bijection h — —h.
Adding the two limits gives
. f'@+h)— f(x—h)
" o
fi(z) = Jim 2h '
As h — 0 we have f(z + h) + f(x —h) — 2f(z) = 0 and h? — 0, so by Theorem 5.13,
o T =B = 2f@) . feth) - e h)
h—0 h? h—0 2h

= f"(x).

O

Theorem 71. [Ezercise 5.14] Let f : (a,b) — R be a differentiable function. Then f
is convex if and only if f' is monotonically increasing. If f"(x) exists for all x € (a,b),
then f is convez if and only if f"(x) >0 for all x € (a,b).

Proof. Suppose that f is convex. Let z,y € (a,b) with z < y. Since f is convex, every
t € (z,y) has

[0 = @) _ )= F@) _ f&) =10

t—ux - Yy—x - y—t
Then
i £ =T(@) _ f) — f(@)
t—a+ t—x Yy—x
fly) = f@) o FW) = F(@)
y—x  tsy—  y—t

and since f'(x), f'(y) both exist, f'(x) < f'(y). Conversely, suppose that f’is monoton-
ically increasing. Let z,y € (a,b) with x <y and let A € (0,1). Let t = (1 — X)x + Ay.
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By the mean value theorem,

f(y) — f(t) gt
Tt f(t2)

for some ¢, € (z,t) and ¢y € (t,y). Since t; < to,
£~ F@) _ Fl) — £
t—x - y—1t
(1 =My = 2)(f(t) = () <Ay —2)(f(y) = f(1))
F((L =Nz 4+ Ay) < (1 = A)f(z) + Af(y),

which shows that f is convex. If f” is defined on (a,b), then f’ is monotonically
increasing if and only if f”(z) > 0 for all x € (a,b). O

Theorem 72. [Ezercise 5.15] Let a € R and suppose that f : (a,00) — R is twice-
differentiable. Suppose that My, My, My are the least upper bounds of |f(z)|, |f'(x)|,
|f"(z)| respectively on (a,00). Then M} < 4MyMs.

Proof. Let © € (a,00). For any h > 0, by Theorem 5.15, there exists a point & €
(z,z + 2h) such that

fla+2h) = f(x) + 2hf'(x) + 207 f"(€)
@) = g [+ 20) = F(@)] ~ h"(€).
Then
7)) < |5 £+ 20) = F@)] - hf"(€)

e 2y

a4 Mo
so that My < hMs + My/h since M; is the least upper bound of |f'(x)|. Setting
h = M1/<2M2) gives M12 S 4MOM2. O

Theorem 73. [Ezxercise 5.16] Suppose that f : (0,00) — R is twice-differentiable, f"
is bounded on (0,00), and f(x) — 0 as x — oco. Then f'(z) — 0 as x — oc.

Proof. Choose M such that |f"(z)] < M for all x € (0,00). Let € > 0 be given. There
exists a A such that |f(z)| < €2/(16M) for all x € (A, 00), and by Theorem [12] we have
|f'(x)] <e/2 < e forall z € (A, 00). This shows that f'(z) — 0 as x — oco. O
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Theorem 74. [Ezercise 5.17] Suppose that f : [—1,1] — R is a three times differen-
tiable function such that

Then & (x) >3 for some x € (—1,1).

Proof. By Theorem 5.15, there exist points s € (0,1) and ¢ € (—1,0) such that

3)(s)
6

f@) =)+ Foy+ 10
2 (3)5
(*) 1:f2(0)+f (5),

6
" (3)
F(=1) = £(0) = £(0) + f2(°) _f 6(75)

0 O

2 6
Subtracting from (*) gives f&)(s) + f@(t) = 6. If f&)(s) > 3 then we are done;
otherwise, f®)(s) =6 — f3)(t) < 3, s0 fO(t) > 3. O

Theorem 75. [Ezercise 5.18] Let n be a positive integer. Suppose that for f : [a,b] —
R, the value f~V(t) exists for everyt € [a,b]. Let o, B, and P be as in Theorem 5.15.

Define Q(t) = (f(t) — f(B))/ (t = B) for allt € [a,b] and t # . Then

N Q" Y(a) n
F(8) = P(3) + Sy (B = )"
Proof. We want to prove that
QI(t) n an F0(t)

for all n > 1. The case n = 1 is equivalent to the definition of ). Assuming the
statement for n and differentiating the above expression, we have

Q™(t) . QUI() IR A () n-1
(B —1)" = mn(ﬁ—ﬂ = Tnc 1)!(5—15)

n—1)
Q(n) t _ Q(n—l) ¢ . f(n) " i
(n—(l))!(ﬁ_t) t= rf)!)n(ﬁ—t) " (n _<1;!(B—t) )
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where in the first line, most of the terms on the right vanish. Applying the induction
hypothesis gives

() (¢ noe(k) (4 () (¢
e - =np(e) - Y o o - Ly
! — ! !
(n) k) (4
Ee == 10) =S L o
which proves the statement for all n. Setting ¢ = a produces the desired result. 0

Theorem 76. [Ezercise 5.22(a)] Let f : R — R be a differentiable function with
f'(t) # 1 for allt € R. Then f has at most one fixed point.

Proof. Suppose that f has two fixed points, * = f(z) and y = f(y), with  # y. By
the mean value theorem, there exists a ¢ € (z,y) such that
fly) — f(z
W) = 1@
y—x
which is a contradiction. 0

Theorem 77. [Ezercise 5.22(b)] Let f : R — R be given by f(t) =t+ (1+¢e')"t. Then
f has no fized point, but f'(t) € (0,1) for allt € R.

Proof. To show that f has no fixed point, note that (1+e')™! £ 0 for all ¢ € R, so that
ft)=t+ (1+¢e")t#tfor all t € R. Also,

f'(t) =1-

6t

1 1
S ltet * (14et)?
From the first line, f’(t) < 1 for all ¢ € R, and from the second line, f'(t) > 0 for all
teR. UJ

Theorem 78. [Ezxercise 5.22(c)] Let f : R — R be a differentiable function. If there
exists a constant A < 1 such that |f'(t)] < A for all t € R, then f has a fixved point
xr = lim,_, , where xy € R is arbitrary and x,1 = f(z,) forn >0,

=1

Proof. The case A = 0 is trivial, so we may assume that A > 0. By the mean value

theorem, |f(z) — f(y)] < Alz —y| for all z,y € R. In particular, |z;11 — 211 <

Alx; — x| for all 4,5 > 0, and |z, — Tpm_1| < A™ ! |2y — 0| for all m > 1. We now

prove that for all n > 1,

A(l — A™)
1—-A

|xm+n - :Em| S |xm - xm—1| .
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The case n =1 is clear. Assuming the statement for n — 1, we have

|:L‘m+n - xm| S |xm+n—1 - $m| + |$m+n - xm—l—n—ll

A(l — A!

S % |xm - xmfl‘ + A" ’xm — Tm—1
A(1 — A™)

= ﬁ fiﬂm - $m71| )

which proves the statement for all n > 1. Furthermore,
a |

1— A Tm Tm—1

for all n > 1. Let € > 0 be given. Recall that |z,, — 2,1 < A™ |z, — 2] for all

m > 1 and that A < 1; there exists a N such that |z — zx_1| < (1 — A)/A for all
k> N. Let m,n > N and assume without loss of generality that m < n. Then

|xn - :Em| - |xm+(n—m) - xm‘
< m |C(]m — l’m_1|
<eg,

which shows that {z,} is a Cauchy sequence. By Theorem 3.11, {z,} converges to
some value x; we want to show that x is indeed a fixed point of f. Fix ¢ > 0. We know
that x,, — x, {z,} is a Cauchy sequence, and f(x,) — f(z) because f is continuous.
Then there exists some integer n such that

[z = f(@)] < |z —zn] + |z — f20)] + |f(20) — f(2)]
= |$ _xn| + |xn _$n+1| + |f($n) - f(il))|
< 3e.

Since € was arbitrary, « = f(z). O

Theorem 79. [Ezercise 5.23] The function f(z) = (2 + 1)/3 has three fived points
a, 3,7, where =2 < a< —1,0< <1, and 1 <y < 2. For an arbitrarily chosen x1,

define {x,} by setting x,+1 = f(zn).

(1) If x1 < «, then x, — —o0 as n — 0.
(2) If a < x1 <7, then x,, = B as n — oo.
(3) If v < x1, then x,, — +00 as n — 0.
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Proof. Let g(x) = 23 — 3z + 1; since a, 3, are fixed points of f, they are roots of g.
Suppose that 1 < a. For any ¢ > 0, we can compute

gla—c) = (a® —3a+1) — 3a’c+ 3ac® — & + 3¢
=c(3(1 — a®) + 3ac — )

< 3ac? - ¢
< —c
(*) f(oz—c)<(oz—c)—%3,

Let d = o — 1 > O @ shows that z,.; < x, — d/3 for every n > 1, and clearly
x, — —00 as n — oo. Now suppose that a < x; < 7. A simple induction argument
shows that a@ < =, < v for all n > 1, and by a variation on Theorem T, — [ since
f'(z) = 2% € [0, max(a, )] for all z € [o,7]. Finally, the case for v <  is similar to
the case 1 < a. ]

Proposition 80. [Ezercise 5.25] Let f : [a,b] — R be a twice differentiable function
with f(a) <0, f(b) >0, f'(x) > >0, and 0 < f"(x) < M for all x € [a,b]. Let £ be
the unique point in (a,b) at which f(§) = 0. [Note: the inequality 0 < f"(x) has been
changed to 0 < f"(x)./

Choose x; € (&,b) and define {x,} by

Tpy1 = Tp — f’(l’ )
n

We now prove by induction that x,1 € (§,x,) for all n. For all n, applying the mean
value theorem gives a value ¢ € (&, x,,) such that

TEDZ 1) _ o) < p),
since ¢ < x,, and f’ is strictly increasing. Therefore
f(zn)

=Ty — Tpi1 < Ty — &

and £ < x,41. Also, f(x,) > 0 for otherwise f(y) = 0 for some y € [x,,b) by the
intermediate value theorem. Therefore f(x,)/f'(z,) > 0 and z, 41 < .



Applying Taylor’s theorem with a = x,,, § = £ gives a point t,, € (£, z,,) such that

f(&) =

o f(zn)
" f(zn)

Tpny1 — 5

Counsider the statement

If n =1, then

Fl) + )€ = 70) + 5 F () (€~ 72)°

P
') o

T — € < 5 [Aley — O

P
) 5— 2f’(m1)( 1 5)
M 2
< m(% —§)

< Az — €2

Otherwise, assuming the statement for n — 1, we have

Tn+1 — f = 2.];-,((Zi> (xn - 5)2
< A(xn - 5)2
< [Am -
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which proves the statement for all n. Since 0 < x,,1 — £ for all n, this shows that
xr, — & asn — oo. Let g(z) = x — f(x)/f (x). Since £ is a root of f, g(§) = &, and
x, — &, the process amounts to finding a fixed point of g. For x near &,

g'(x) =1

F@? = @) (@)
Fla)?

f(z)f"(x)
fr(x)?
~ 0.

Theorem 81. [Ezercise 5.26] Suppose that f : [a,b] — R is a differentiable function
with f(a) = 0. Let A be a real number such that |f'(z)| < Alf(x)| for all z € |a,b).

Then f = 0.
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Proof. Let zy € [a,b], My = sup,<,<,, | f(z)|, and M; = sup,,,, | f'(x)|. By the mean
value theorem, there exists a point ¢ € (a, z() such that

L) _ e
|f(zo)| < Mi(zg — a) < A(xg — a)M,.

Suppose that o > a and let © € (a,z(). By the mean value theorem, there exists a
point ¢ € (a,x) such that

T

|f(x)] < Myi(z — a)
< M1 To — CL) < A(Z’O — CL)M().
Since f(a) =0, we have |f(z)| < Mi(zo —a) < A(xg — a)M, for all x € [a,b]. Suppose
that A(xg —a) < 1; then My = 0 for otherwise A(zy — a)My < My is a lower bound of

|f(x)] in [a,z0], which contradicts the definition of Mj. Therefore, if zy > a is small
enough, then f(z) = 0 for all z € [a,x0]. Now divide the interval [a, b] into n closed

intervals [a, p1], [p1, p2], - - -, [Pn, ] where n is the smallest integer with n(z¢g—a) > b—a,
and py = a+k(xzg—a). We have shown that f is zero on [a, xo] = [a, p1]; since f(p1) = 0,
applying the argument on [p, ps| shows that f is zero on [py, ps], and so on. O

Theorem 82. [Ezercise 5.27] Let R be a rectangle in the plane given by a < x < b and
a<y<p for(x,y) € R. Let ¢ : R — R be a function defined on the rectangle. A
solution of the initial-value problem

v =d(x,y), yla)=c wherea<c<p
is by definition a differentiable function f : [a,b] — [a, (] such that f(a) = ¢ and
f'(x) = ¢z, f(x)) for all x € |a,b]. Suppose that there is a constant A such that
|¢($7y2) - ¢(:Ea y1)| < A |y2 - y1|

whenever (x,y1) € R and (x,y2) € R. Then the problem has at most one solution.

Proof. Let f, g be two solutions of the initial-value problem, and let A : [a,b] — R be
given by h(x) = f(z) — g(z). Then
W (2)] = [f'(z) — ¢'(2)]
= |o(z, f(z)) — ¢(z, g(x))]
< Alf(z) — g(2)]
= Alh(z)|
for all x € [a,b]. Since h(a) = 0, by Theorem |81} h =0 and f = g. O
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CHAPTER 6. THE RIEMANN-STIELTJES INTEGRAL

Theorem 83. [Exercise 6.1] Suppose « : [a,b] — R is increasing, a < xo < b, « is
continuous at xo, f(xg) =1, ad f(x) =0 if & # xo. Then f € R(a) and f;f da = 0.

Proof. By Theorem 6.10, f € R(«) since f has only one point of discontinuity. Also,
since L(P, f,a) = 0 for all partitions P, fab fda=0. OJ

Theorem 84. [Exercise 6.2] Suppose f : [a,b] — R is a continuous function, f > 0,
and f:f(x) dex =0. Then f =0.

Proof. Suppose that f # 0; we can choose g € (a,b) such that f(xy) > 0, for f cannot
be nonzero only at its endpoints due to continuity. Then there exists a 6 > 0 such that
|f(z0) — f(z)] < f(x)/2 whenever |zo — x| < §. In particular, f(z) > f(z0)/2 for all
x € [xg — v, xo + 7], where vy = min {6/2, zg — a,b — z9}. By Theorem 6.12,

/a ) dir = / ) de - / :’Y f(@) dr + ;V f(@) da
zo+
> / yf(x) dx
> / " b 0))2 da
> 0,

which is a contradiction. Therefore f = 0. U

Theorem 85. [Ezxercise 6.3] Define three functions 1, B2, B3 as follows: ;(x) =0 if
r <0, Bij(x)=11ix>0 for j=1,2,3; and 5;(0) =0, £2(0) =1, B2(0) = % Let [ be

a bounded function on [—1,1].

R(f1) if and only if f(0+) = f(0), and then [, f(z)dB = £(0).

fe
f € R(B2) if and only if f(0—) = f(0), and then fjl f(x) dBy = £(0).
f € R(B3) if and only if f is continuous at 0.

1

/_11“3“") @h1 = /_zf@) Ay = /_tf(@ dps = £(0).
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Proof. Let € > 0 be given. There exists a § > 0 such that |f(z) — f(0)| < £/2 whenever
0 <z <. Let vy =min(1,0)/2 and let P = {—1,0, 7, 1} be a partition of [—1,1]. Then
U(P7f7ﬁl) _L(mevﬂl) = sup f(l’) — inf f(l‘)

z€[0,] z€[0,7]
<e,

so f € R(f). Furthermore,
U(P, f, 1) = sup f(x)

z€[0,7]
g

which shows that f_ll f(z)dB, = f(0) since £ was arbitrary. Conversely, suppose that
f € R(f1). Let € > 0 be given. There exists a partition P of [—1, 1] such that

U(P7f751>_L(P7f751):Mz_mz
<e€

for some i with ;1 <0 < x;, where M; = sup,¢(,, , ., f(*) and m; = infocpp,_, 2 f(2).
Then whenever 0 < ¢t < z; we have 0 < f(t) —m; < € and —e < m; — f(0) < 0 so
that |f(t) — f(0)| < e. This shows that f(0+) = f(0). The proof is similar for (2) and
(3). O

Theorem 86. [Ezxercise 6.4] If f(x) = 0 for all irrational x and f(x) = 1 for all
rational x, then f ¢ R on [a,b] for any a < b.

Proof. Let P = {xy,...,x,} be a partition of [a,b]. For all x < y there exist both
rational and irrational numbers in (z,y), so M; = 1 and m; = 0 for every i. Therefore

UP,f) = L(P, f) =) A

and f ¢ R on [a,b]. O

Remark 87. [Exercise 6.5] Suppose f is a bounded real function on [a,b], and f* € R
on [a,b]. Does it follow that f € R? Does the answer change if we assume that f3 € R?

Assume that a < b and let f(z) = 1ifz € Q, f(z) = —1if z ¢ Q. Then f> € R

with fabf(x)2 dr = b—a, but f ¢ R. This disproves the first part of the statement.

1/3

However, the second statement is true by Theorem 6.11, since z + x'/° is continuous

on any interval in R.
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Theorem 88. [Exercise 6.7] Let f : (0,1] — R and suppose that f € R on [c,1] for

every ¢ > 0. Define
1 1
/ flx)dz = lin%/ f(x)dz
0 c=UJe

if this limit exists (and is finite).
(1) If f € R on [0,1], then this definition of the integral agrees with the old one.

(2) There exists a function f such that the above limit exists, although it fails to
exist with | f| in place of f.

Proof. If f € R on [0, 1], then by Theorem 6.20, F(c f f(z) dx is continuous on
[0, 1]. Therefore lim, o F'(c fo O

Theorem 89. [Ezercise 6.8] Suppose that f € R on [a,b] for every b > a where a is

fixed. Define
/oof<x>dx=gggo/ i

if this limit exists (and is ﬁmte) Assume that f(x) > 0 and that f decreases monoton-
ically on [1,00). Then f1 x) dz converges if cmd only if Y~>°, f(n) converges.

Proof. Suppose that f1 x) dx converges to L. For every € > 0, there exists a M > 1
such that ‘fl ) dx — L‘ < /2 whenever b > M. Then for all n > m > M + 1, we

have
n n m—1
d dr — L+ L — d
| twies [ f@ar-rer- [ f@a
<e€

But since f decreases monotonically on [1, c0),

n n k
0<) Jky<) | fl)de
k=m k=m -1

_ /mn_l f(x) de
<e€

which shows that ) >° | f(n) converges. Conversely, suppose that Y, f(n) converges;

we first show that the sequence { ff f(x) dx} converges. Let € > 0. There exists a
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M > 1 such that for all n > m > M we have 0 < )", f(k) < e. Then for all
m,n > M, assume m < n so that
/ f(@) da

Og/lnf(x)dx—/lmf(x)dx
/+1

f ()

m

I
M

0
L3

IN

A\
O

This shows that f1 x) dr — L for some L > 0, and furthermore, f1 r) dx < L for
all ¢ > 1 since the sequence is monotomeally increasing. Let € > 0 be given; there exists
a N > 1such that 0 < L — f1 x)dr < & whenever i > N. Now for all real b > N + 1,

/1 f(z) dz < / f(@) da

b 1]
OSL—/f(x)deL— f(x) dz
1

1
< E.
This proves that f1 x) dx converges to L. 0

Theorem 90. [Exerczse 6.9] Suppose that F' and G are differentiable on [a,b] for every
b>a, F'=feRand G =g R. If

lim F(b)G(b)

b—o0

/aoo f(x)G(x) dx

/ " Fl)gle) do = lim FO)GH) — F)Gla) — [ f(2)C() da.

b—o0

exists (with a finite value) and

converges, then

Proof. For every b > a,

The result follows from Theorem 4.4. O



Theorem 91. [Ezercise 6.10] Let p and q be positive real numbers such that
1 1

Syt =1
P q
(1) If u>0 and v > 0, then
ub
uw < — + —,
p q

with equality if uP? = v9.
(2) If f € R(@), g € R(e), f =20, 9>0, and

b b
/fpdozzlz/ g% da,

b
/ fgda < 1.

(3) If f and g are complex functions in R(«), then
b b 1/p b 1/q
[ sodal <{ [ aal { [ar aal

v = (up)l/p(vq)l/q

1 1
= exp (— log up) exp (— log vq)
p q

1 1
= exp (— log u” + — log vq>
p q

then

Proof. We have

1 1
< —exp (logu?) + — exp (log v?)
p q

ub e

p q
since 1/¢ =1 —1/p and exp is convex. If u? = v9, then
w = (up)l/p(vq>1/q
— (up)l/erl/q
=uP
uf v

= — 4 .
p q

42
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This proves (1). Let f € R(«), g € R(a) with f >0, ¢ > 0 and

b b
/fpdazlz/ g7 da.

M<ﬁ+f
TP q

b 1 ? 1 [
/ fgda < —/ fpdoz+—/ gt da
a PJa q.Ja
=1
which proves (2). Now suppose that f and g are functions in R(«). Let
b 1/p
a={ [ aa}
b 1/q
5={ [ bl ia

() e ()

assuming that A, B > 0. Applying (2) gives

Then (on [a, b))

so that

"1 f11g]
-7 <1
- ap festh
and then
b b
[ fadal < [ 11llgl da
< AB
b 1/p b 1/q
={/ I da} {/ " da} |
which proves (3). O

Theorem 92. [Exercise 6.11] Let o be a fixed increasing function on [a,b]. For u €

R(«), define
b
full = { [ 1of aa}
Suppose f,g,h € R(«). Then

If = hlly < [If = glly + llg = Rl

1/2
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Proof. On [a, b] we have
(f=h?=(f—g+g—h)?
=(f—9’+2(f—9)g—h)+(g—h)
b b b b
[1r =t da= [ 17 =gf darz [ (7= g)g-Rydat [ g b da

/ab(f—g)(g—h)da +/ab!g—h!2 da

b
< [17 - da2

Applying Theorem |91 gives

1/2

b 1/2 b
||f—h||§§||f—g||§+2{/ =P da} {/ g — AP da} g — I

=1f = gls +211f = glls llg = Blly + llg — Rll5
= (If = glly +llg = hll,)*,

which completes the proof. O

Theorem 93. [Ezercise 6.12] Suppose f € R(a) and € > 0. Then there exists a
continuous function g on [a,b] such that || f — g, <e.

Proof. Let M = sup f(x) and m = inf f(x) over = € [a, b], and assume that M # m for
otherwise f is constant and the result follows by setting g = f. Let P = {xo,..., 2.}
be a partition of [a, b] such that U(P, f,«) — L(P, f,a) < £2/(M — m). Define

o(0) = B i + L

for z;_y < t < x;; g is continuous at each x;. For each i, let M; = sup f(x) and
m; = inf f(x), over x € [z;_1,x;]. We can rewrite g as

f(x;) = fwiz1)

A, (t —xi1),

g(t) = f(xi1) +

which shows that

m<m; <gle) <M; <M
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for all x € [a,b]. Then
2 ’ 2
I =l = [ 1) = gta) da
—Z/ 2| da
i=1 v Ti-1

n
- Z |M; — mi|2 Aa
i=1
n

< (M —m)) (M; —m;)Day

i=1

= (M_m)(U(P7f7a)_L(P7f7a>>

< &2,

which completes the proof. O

Theorem 94. [Ezercise 6.13] Define

) | (z)| < 1/xz if x > 0.

) 2z f(z) = cos(z?) — cos|[(x + 1)?] + r(x) where |r(z)| < ¢/x and c is a constant.
)1 msupm_moxf( ) =1 and liminf, ,, xf(z) = —1.

) [, sin(t?) dt converges.

Proof. Let x > 0. By Theorem 6.8,

sin(u)
= NG

is Riemann-integrable on [2?, (z + 1)?]. Let ¢ : [z,z + 1] — [2?, (x + 1)?] be given by
t — t2. Since ¢ strictly increasing and onto, applying Theorem 6.19 gives

(z4+1)2 _: z+1
/2 szl\r;g du = sin(t?) dt = f(x).
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Let F(u) = —cosu and G(u) = 1/(2y/u) so that F'(u) = sinu and G'(u) = —1/(4u?/?).
By Theorem 6.22,

)= 20 2x+1) > a2
[

< cos(z?)  cos|(z +1)?] /('J”Jrl)2 1
- 2z 2(x +1) 22 4u3/?
cos(x?)  cos[(z+1)} 1 1

_cos(a?)  cos[(z +1)?] /(’”+1)2 cosu

du

2z 2(z+1) o 2(x +1)
cos(z?)+1  cos[(z + 1)} +1
20 2(+1)
1 1
r z+1
1

<

<=
i

and similarly replacing cosu with 1 gives —1/x < f(z). This proves (1). For (2),
(*) 2z f(z) = cos(z?) — cos[(z + 1)?] + r(z)
where

1 (z+1)2
r(z) = - cos[(z + 1)?] — :13/@2 % du.

z+1
Furthermore,

1 @)?
< —d
< =gt [ g
1 . 1 1
f— :L‘ [ —
x+1 xr x+1
2

+x

1
2
x

since 2z < 2 4 2x. Then equation (*) shows (3). The integral [ sin(¢?) d¢ converges
if [ sin(¢?) dt converges. As in (1) we have for all b > 1,

/1 ’ sin(1?) dt = /1 ! S;%) du

/b2 sin(u) = ~cos(b?) N cosl /b2 cosu
N 2 2 e

and
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Since [°1/(4u*?) du converges, applying Theorem [90| shows that [, sin(¢?) dt con-
verges. 0

Theorem 95. [Exercise 6.15] Suppose that f : [a,b] — R is a continuously differentiable
function with f(a) = f(b) =0, and

/abf(:c)2 dx = 1.

Then

and
(/ab f(2)? dx) (/jﬁf@)?d;p) > :11

Proof. Let F(x) = f(z) and G(x) = xf(z) so that F'(z) = f'(z) and G'(z) =z f'(x) +
f(z). By Theorem 6.22,

/a (@) () do = / F@) e ) + @) de
- ‘/abf(x)z dz — /ab f(x)f'(x) du

1

< ([vrwr w) ([ wrwr w).

Theorem 96. [Ezercise 6.16] For 1 < s < oo, define

By Theorem [91] we have
1

[ @it @) ds

=1
((s) = v
n=1




Proof. For every positive integer N,

N N-1
Ed
3/1 o dr = s g

n+1 LxJ
/n xs—&-l dx

n=1
_N‘1< 1 n+l 1 )
ot ns=t  (n+1)*  (n+1)°
_N‘1< 1 1 >+ iy
- s—1 s—1 _s
£~ \n (n+1) —~n
N
1 1
—1— =
Ns—1+;ns
- ns stl

so that

and again,

1
1 1
Ns—l B Ns—l
1
ns

48
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if s > 1. In fact, the integral in (2) converges for all s > 0 since

N N
x— |x] 1
[ xs-i—l dx S /1 xs—‘rl dx
1 1
——(1-—).
5 ( N5>
Lemma 97. Suppose that f € R on |a,b] and let P be a partition of [a,b]. Let ¢ be

a real number. If U(P*, f,«) > ¢ for every refinement P* of P, then f;f da > c. If
L(P*, f,a) < ¢ for every refinement P* of P, then fabf da < c.

O

Proof. Let € > 0. There exists a partition P’ of [a, b] such that

b
UP, f,a) < / fda+e.
Let P* = P U P’; since P* is a refinement of P, we have
b
2<UP fo) SUP o)< [ fate

which completes the proof since ¢ > 0 was arbitrary. The case for the lower sums is
analogous. O

Theorem 98. [Ezercise 6.17] Suppose « increases monotonically on [a,b], g is contin-
wous, and g(x) = G'(x) for all x € [a,b]. Then
b b
/ a(x)g(x) de = G(b)a(b) — G(a)a(a) — / G(z) do.

Proof. Let € > 0 and let P = {x,...,x,} be a partition of [a, b] such that U(P, g) —
L(P,g) < e. Applying the mean value theorem gives points ¢; € (z;_1, ;) such that

Za(wi)g(ti)ﬁxi = Z a(z;) [G(zi) — G(zi-1)]

— Z alr;_1)G(ri_1) — Za(xi)G(fEi—l)

*) = G(b)a(b) — G(a)a(a) — Z G(zio1) Aoy

i=1
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and
n

Z lg(xi) — g(ti)| Aw; < €

by Theorem 6.7 so that -
Z a(z;)g(w;) Ar; — Z afx;)g(ti) Ary| = Z a(z;) [9(xi) — g(t:)] A
< Z (@) [g(@:) — g(t)]] A
< ]Z\}s

where M = sup a(z) over z € [a,b]. From () we have

n

> a(a)g(z) Az < GO)ad) — Gla)ala) = > Glaiy) Aoy + Me

i=1 i=1

L(P,ag) + L(P,G,a) < G(b)a(b) — G(a)a(a) + Me
and similarly
G(b)a(b) — G(a)a(a) — Me < U(P,ag) + U(P,G, ).

But these two inequalities are true for any refinement of P, so by Theorem [97]
S —Me < / a(x)g(x) de = / a(x)g(z) de < S+ Me

2 a

where ,
S =G(b)a(b) — Gla)a(a) — / G(z) da.
Since ¢ was arbitrary, the result follows. O

Theorem 99. [Ezercise 6.18] Let ~1,72,73 be curves in the complex plane, defined on
[0,27] by
’yl(t) = eit7 72(75) = @2“7 73(75) — 2mitsin(1/t)

(1) v1,72 are rectifiable. v, has length 2 and 2 has length 4.
(2) 73 is not rectifiable.

Proof. Applying Theorem 6.27 shows that

27
A(n) :/ |ie"| dt
0

=27
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and
27 )
Alm) = / |2ie*| dt
0
= 4.

Let P ={z41,...,2/7} with
2

T Gk

so that

2n+1
A(P, ,_)/3) _ Z }627”'9% sin(1/zg) 627ri:r:k_1 sin(1/zp_1) )
k=1

> i ‘e4i/(4k+1) _ e—4i/(4k—1)|
k=1

= 4 4
- 22
; COS(4k+1+4k—1)

— O

as nm — oo since v/2 — 2cosx = x + O(z3) and

i 4 N 4
Ak +1 4k —1

k=1

diverges. This shows that A(y3) = +o00 and therefore 73 is not rectifiable. O

Theorem 100. [Exercise 6.19] Let v, : [a,b] — RF be a curve and let ¢ : [c,d] — |a, b]
be a continuous bijection such that ¢(c) = a. Define vo = v1 0 ¢. Then:

(1) 72 is an arc if and only if ~, is an arc.

(2) 72 is a closed curve if and only if v1 is a closed curve.

(3) o is rectifiable if and only if v1 is rectifiable, and in that case v1,ve have the
same length.

Proof. (1) is clear since the composition of injections is also an injection (¢, ¢! are
both injective). (2) is clear since ¢ is monotonically increasing and ¢(d) = b. For (3),
suppose that ~ is rectifiable. Let P = {xy,...,z,} be a partition of [c, d]. Define P’ =
{é(x0), ..., ¢(x,)}; This is a well-defined partition of [a, b], for ¢ must be monotonically
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increasing. Then

AP, y2) = Z (@) = n(P(i1))]

= AP, )
< A(mn).

Since this holds for all partitions, we have A(y2) < A(7;) which shows that o is
rectifiable. Noting that 4, = 790071, the same argument proves that A(y;) < A(y). O

CHAPTER 7. SEQUENCES AND SERIES OF FUNCTIONS

Theorem 101. [Ezercise 7.1] Every uniformly convergent sequence of bounded func-
tions is uniformly bounded.

Proof. Let f, — f uniformly on E, where each f, is bounded. That is, for each n,
M,, = sup,cp | fn(x)| is finite. Choose an integer N such that |f,,(z) — f(z)| < 1 for all
n > N and x € E. In particular,

[f(@)| < |fw(z) = fl2)] + [fn(2)]
< My+1

for all x € E, and

()] < [fulz) = f(2)] + [ f(2)]
< My +2

for all n > N. Take M = max{M,..., Mn_1, My + 2} so that |f,(z)] < M for all
n > 1. This completes the proof. 0

Theorem 102. [Ezercise 7.2] If {f,} and {g,} converge uniformly on a set E, then
{fn + gn} converges uniformly on E. Furthermore, if {f,} and {g,} are sequences of
bounded functions, then {f.gn} converges uniformly on E.

Proof. Let f, — f and g, — g uniformly on E. For any £ > 0, there exist in-
tegers Ny, Ny such that for all x € E, |f.(z) — f(z)| < £/2 whenever n > N; and
lgn(x) — g(x)| < /2 whenever n > Ny. Then |f,(z) — f(z) + gn(z) — g(x)| < € when-
ever x € E and n > max(Ny, Ny), which shows that f, + g, — f + ¢ uniformly
on E. Now suppose that {f,},{g.} are sequences of bounded functions, so that
f,g are bounded. Let ¢ > 0 be given. Choose Nj, Ny such that for all z € FE,
|fu(x) — f(x)] < /e whenever n > N and |g,(z) — g(z)| < /¢ whenever n > Ns.
Then for all z € E and n > max(/Ny, Ns)

(@) = f(@)][gn(2) — g(@)]] <&,
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which shows that (f, — f)(g. — g) — 0 uniformly on E. Since f,g are bounded,
f(gn —9g) = 0 and g(f, — f) — 0 uniformly on E, so that

fngn_fg:(fn_f)(gn_g)+f(9n_g)+g(fn_f)

—0

uniformly on F. O

Theorem 103. [Exercise 7.3] Let f,(x) = x and g,(x) = 1/n; f, — x and g, — 0
uniformly on R, but {f.g.} does not converge uniformly.

Proof. Choose € = 1 and let N be an integer. Then (f,g,)(N) > 1 =¢ for alln > N,
which shows that {f,g,} does not converge uniformly. O

Example 104. [Exercise 7.4] Consider

@) =Y

For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous wherever the series converges? Is f bounded?

e The series does not converge when z = 0, and is undefined when z = —1/n? for
any integer n > 1. However, it converges absolutely for all other x.

e The series converges uniformly on a set E if and only if 0, —1, —1/22 —1/3% ...
are all interior points of F°.

e f is continuous and bounded on any set where it converges uniformly.

Example 105. [Exercise 7.5] Let

1
0 fOI‘I‘<n—+1,
Y ! 1 1
fulz) = S forn—ngcgg,
0 for%<x.

For any z, there exists a N such that 1/n < x for all n > N; this shows that f, — 0.
Choose € = 1; then for all N we have
(2N + 1) 9
—_— ) = 2N(N +1 2N +1
= 17

which shows that {f,} does not converge uniformly. Now consider the series _ f,(z).
For any x there are only finitely many non-zero terms, so that the series converges
absolutely for all x. Again, the series fails to converge uniformly.
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Theorem 106. [Ezercise 7.6] The series

0 i(—l)“iﬁ " i(—l)” (5+3)

converges uniformly in every bounded interval, but does not converge absolutely for any
value of x.

Proof. Let I be a bounded interval and let M = sup,.; |x|. By Theorem 3.43, > (—1)"/n
converges, and >_(—1)"z?/n? converges (absolutely) for all z. Therefore (*)) converges,
and it remains to show that the convergence is uniform. Let € > 0 be given and choose
N; such that

S

k=m

<e/2

whenever n > m > N;. Also choose N, such that

n M2
Z ? < 8/2
k=m

whenever n > m > Ny. Then for all n > m > max(Ny, No) and all z € I,

= S| & ol = 12
S0 ()| | S e

IA
(]
&
3
SIS,
+
:N‘

This shows that (ED converges absolutely by Theorem 7.8. That the series does not
converge absolutely is clear from the fact that ) 1/n diverges. O

Theorem 107. [Exercise 7.7] Let f, : R — R be defined for all positive integers n by

o
14 na?’

Then {f.} converges uniformly to a function f, and the equation
(*) fl(@) = lim f(z)
n—oo

1s correct if x # 0 but false if v = 0.
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Proof. Let € > 0 be given and choose an integer N such that N > 1/e2. Let n > N
and x € R. If |z| < ¢ then

x
1+ na?

< 2]
<e.

Otherwise,

1
< |—

nx
<eE.

x
1+ na?

This shows that f,, — 0 uniformly on R. For each n we have

1 — na?
/ _
Fnl®) = e
If z # 0 then f/(z) — 0 as n — oo so that () is true, but f/(0) = 1 while f’(0) = 0,
which contradicts (ED 0
Theorem 108. [Ezercise 7.8] If
<
I(2) = 0 forz _‘0,
1 otherwise,

if {xn} is a sequence of distinct points of (a,b), and if Y |c,| converges, then the series
f(l’) = chf(x - zn)
n=1
converges uniformly on |a,b|. Additionally, f is continuous for every x # x,.

Proof. Applying Theorem 7.10 shows that the series converges uniformly on [a, b] since
cnl (= 20)| < |yl

for each n and ) |¢,| converges. If x # x,, then there exists a neighborhood N of z
such that N N {z,} is empty. It is clear from the definition that f is constant on N,
that is, f(t) = f(u) for all t,u € N. This shows that f is continuous at x. O

Theorem 109. [Ezercise 7.9] Let {f.} be a sequence of continuous functions which
converges uniformly to a function f on a set E. Then

T fula) = £(2)

for every sequence of points x,, € E such that x,, - = and x € E.
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Proof. Let € > 0 be given. Choose an integer Ny such that | f,,(t) — f(¢)| < €/2 whenever
t € F and n > N;. By Theorem 7.12, f is continuous on FE, so that we may choose
a d > 0 such that |f(t) — f(z)| < £/2 whenever |t — x| < §, and choose an integer Ny
such that |z, — 2| < § whenever n > Ny. Then for all n > max(Ny, Ny),

[f(xn) = f(2)] < | fulen) = fan)| 4+ [f(2n) = f(2)]

<E.

Theorem 110. [Exercise 7.11] Let {f.},{gn} be sequences in a set E. If

(1) >° fu has uniformly bounded partial sums,
(2) gn — 0 uniformly on E, and
(3) q1(x) > ga(x) > g3(x) > -+ for every x € E,

then > fngn converges uniformly on E.

Proof. Note that g(z) > 0 for all z € E and k > 1, since each {g,(z)} is monotonic.
Let ¢ > 0 be given. Since Y f, has uniformly bounded partial sums, we can let
M = sup,cp |An(x)| where A, (z) denotes the partial sums of > f,(z). Choose an
integer N such that gy < e/(2M). Then for alln >m > N and z € E,

Z Jn(@)gn(z Z Ap(z = grr1(2)] + An(2)gn () — Am1(2)gm ()

< Z | A (2 = g1 (0)] + [An (@) gn ()] + | A1 (2) g ()]

<M (Z[gk(x) = gr1 ()] + gn(z) + gm(w))

k=m
=2M g, ()
< E.
O
Theorem 111. Let {f,} be a sequence of functions that converge uniformly to f on
la,00), where im,_,o fn(z) exists for each n. Let
A, = lim f,(x);
T—r00

then {A,} converges, and
lim f(x) = lim A,.

T—00 n—00
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Proof. Let ¢ > 0 be given. Since {f,} converges uniformly to f, there exists an integer
N such that |f,(z) — fm(x)] < € whenever every > a and m,n > N. By Corollary 30}
|A, — A,| < e for all m,n > N. This shows that {A,,} converges to some A. Choose
an integer N such that |f(x) — fx(z)| < /3 for all z > a and |Ay — A| < /3. Then
choose a M such that |fy(z) — An| < &/3 for all > M, so that

[f(z) = Al < |f(2) = [ (@) + [fn(2) = An| + Ay = A]
<€

whenever x > max(a, M). This completes the proof. O

Theorem 112. [Ezxercise 7.12] Let g, f,, : (0,00) — R be functions Riemann-integrable
on [t, T] whenever 0 <t < T < oo. If |fu| < g, fu — [ uniformly on every compact
subset of [0,00), and

/ g(x) dr < oo,
0

then

o

lim fo(z) de = /0 f(z) dz,

n—o0 0

provided that all improper integrals exist.

Proof. Define F,, : [0,00) — R for each n and F : [0,00) — R by
b
Fo(b) = / fule) dz,
0
b
FO) = [ fo) s
0

and let L = fooo g(x) dz for convenience. For every b,
lim F,(b) = F(b)
n—oo

by Theorem 7.16, so that F,, — F pointwise on [0,00). We also want to show that
convergence is uniform. Let ¢ > 0 be given. Choose a M > 0 such that

and choose an integer NV such that
€

falw) = F@)] < 5
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whenever n > N and 0 <z < M. Then for all b > M and n > N,

b
Fu(b) — F(b)] = / (o) — f(a)] de

< [ 19 - s aa
< [T 15w - se@) ase [T g e

0 M
<e,
while |F,(b) — F(b)| < €/4 < € trivially when b < M. The result then follows from
applying Theorem on {F,}. O

Theorem 113. [Ezercise 7.13] Let {f,} be a sequence of monotonically increasing
functions on R with 0 < f,,(x) <1 for all x and all n.

(1) There is a function f and a sequence {ny} such that
F@) = Jim £, (2)
—00

for every x € R.
(2) If f is continuous, then f,, — f uniformly on compact sets.

Proof. By Theorem 7.23, there exists a subsequence of functions { f,,, } such that { f,,, (r)}
converges to some f(r) for all r € Q. For all x € R, define
flz) = sup f(r).
r<z,reQ

Let z € R\ Q and suppose that f is continuous at z. Let L = limy_, f,, (z); we want
to show that f(x) = L. For every rational r < x we have f,, (r) < f,, (z) and therefore
f(r) < L by taking kK — oo. This shows that f(z) < L. Suppose that f(z) < L, and
choose a ¢ > 0 with f(z) < f(z) + e < L. Choose a 0 > 0 such that |f(z) — f(t)| < e
whenever |z —t| < 0. If r € Q with x <7 < x + 9, then f(r) < L. But

L= lim f,,(x) < lm f, (r) = f(r) < L,

which is a contradiction. Therefore f(z) = L. If < y then f(z) = limy_,00 fo, (z) <
limy o0 fn, (y) = f(y); by Theorem 4.30, f has at most a countable number of discon-
tinuities {¢;}. Applying Theorem 7.23 again to {t;} produces a subsequence { fnj} of
{fny.} such that f, (t;) converges to some u; for every i. Redefining f(z) using the new

subsequence { f,, } proves (1).
For (2), let f be a continuous function and let {n;} be a sequence such that f(z) =

limy 00 fn, (z) for every z € R. Let E C R be a compact set and let ¢ > 0 be given.
By Theorem 4.19, f is uniformly continuous on F, so there exists a 6 > 0 such that
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|f(xz) — f(y)] < e/3 whenever |z —y| < §. Let A =inf F and B = sup F; construct a
set of points {zy,...,2,} where A =2y <--- <z, = B and x;;; —x; < 6/2 for all
1<i<n-—1. Then for each 1 <i <n — 1 we have

|f(ziv1) — fl25)] = ]}ggo[fnk(xzﬂ) — fan ()] < ¢/3

and we may choose an integer N; such that both |f,, (z:41) — fu,(2:)] < €/3 and
| for (x:) — f(z;)| < €/3 whenever k > N;; let N = max {N;}. Let z € E and choose a j
such that x € [z}, z;11]. Then for all £ > N, since each f,, is monotonically increasing
we have

0 S fnk(l‘) - fnk(x]) S fnk(xj-i-l) - fnk('r>
<e/3
so that
| forn (@) = f(@)] < |frp (@) = far (@))] + [ (5) = f(25)] + | f () — f(2)]

< €.

This completes the proof. O

Theorem 114. [Ezercise 7.15] Let f : R — R be a continuous function and let f,(t) =
f(nt) forn = 1,2,3,.... If {fu} is equicontinuous on [0,1], then f is constant on
[0, 00).

Proof. Suppose that f is not constant and without loss of generality, let 0 < z; < x5
with f(z1) < f(z2). Since {f,} is equicontinuous, there exists a § > 0 such that
|f(nt) — f(nu)| < [f(x2) — f(21)]/2 whenever n > 1,0 < t,u <1, and |t —u| < 4. Let

n be an integer with
T2 — I
n > max 4 ——,21,Ta o

J
Set t = x9/n and u = z1/n; then 0 < t,u <1 and |t —u| = (x2 — z1)/n < J so that
|[f(nt) = f(nu)| = f(z2) — fa1)
< [f(z2) = f(z1)]/2,
which is a contradiction. UJ

Theorem 115. [Exercise 7.16] Let { f,} be an equicontinuous sequence of functions on

a compact set K. If {f,} converges pointwise on K, then {f,} converges uniformly on
K.

Proof. Let € > 0 be given. There exists a § > 0 such that |f,(z) — f.(v)| < € whenever
n>1,z,y € K, and |z —y| < §. The proof is now almost identical to part (2) of
Theorem [113] O
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Theorem 116. [Exercise 7.18] Let {f,} be a uniformly bounded sequence of functions
which are Riemann-integrable on [a,b], and let

F.(x) = /m fa(t) dt

for a < x < b. Then there exists a subsequence {F,, } which converges uniformly on
[a, b].

Proof. Since {f,} is uniformly bounded, there exists a M > 0 such that |f,(t)] < M
for all n and ¢. Let € > 0 be given. Then for all |z — y| < ¢/M and all n we have

/yz £.0) dt’

< / 1) di

< Mz -yl
<e,

|Fn(x) = Fuly)| =

which shows that {F,} is equicontinuous. Clearly, {F},} is also uniformly bounded.
The result follows from Theorem 7.25. O

Theorem 117. [Ezercise 7.20] If f is continuous on [0, 1] and if

/01 fx)z"dz =0

forallm=0,1,2,..., then f(x) =0 on [0, 1].

Proof. By Theorem 7.26, there exists a sequence of polynomials P, such that P, — f
uniformly on [0, 1]. For each n, write P,(z) = >, axz” so that

/0 F(@) P () dz = /0 f(x>§k:akxkdx

= Zak /Olf(x):ck dx

=0.
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Since f is bounded on [0, 1], fP, — f? uniformly on [0, 1] by Theorem and
(x) = lim P,(x)

n—oo

/
/0 1 fla)?dz = /0 i (@) Pu(2) do

n—oo
1
= lim f(z)P,(z) dx
n—oo 0
= 0.
Therefore f(x)* =0 on [0,1]. O

Theorem 118. [Exercise 7.23] Let Py = 0, and define, forn =0,1,2,...,

x? — P%(x
P,ii(z) = P,(z) + Tn()
Then
lim Py () = |x]

uniformly on [—1,1].

Proof. We have the identity

[lz] + Po ()] [|z] = Pa(2)]
2
[lz] + Po(2)] [|2] = Pa(2)]

Poi(x) = Py(r) +

2] = Puga(z) = |2 = Pa(2) —

2
e+ B,

= ol - Paa |1 - 15

By induction on n we have 0 < P,(z) < P,y1(z) < |z| for all n whenever |z| < 1. By
iteration,

2] - Pa(a) = ,x"lﬁ)(_w)
ls)

ety
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For n > 1, function f(x) = z(1 — 2/2)™ has derivative

fla) = (1 _ g)" B n_; <1 - g)n—l

which vanishes at g = 2/(n+1). This value satisfies f(xy) < zo. Since f’(z) > 0 when
0<z<xoand f'(xr) <0 when zop <z <1,
2
n+1
for all |x| < 1. The result follows taking n large enough. O

|z = Po(z) <
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