
Chapter 2. Basic Topology

Theorem 1. [Exercise 2.9(d)] For any set E, (E◦)c = Ec.

Proof. Suppose x /∈ Ec = Ec ∪ (Ec)′, i.e. x ∈ E and x /∈ (Ec)′. Since x is not a
limit point of Ec and x /∈ Ec, there exists a neighborhood N of x such that N ∩ Ec is
empty, i.e. N ⊆ E. This means x ∈ E◦. Then x ∈ (E◦)c ⇒ x ∈ Ec, which shows that
(E◦)c ⊆ Ec.

Suppose that x ∈ Ec = Ec ∪ (Ec)′, i.e. x /∈ E or x is a limit point of Ec. If x /∈ E then
x /∈ E◦, which means x ∈ (E◦)c. If x is a limit point of Ec then for any neighborhood
N of x there exists a y 6= x in N such that y ∈ Ec ⇒ y /∈ E. This shows that x cannot
be an interior point of E, so x ∈ (E◦)c. Thus Ec = (E◦)c. �

Theorem 2. [Exercise 2.19(b)] If A and B are disjoint open sets, then they are sepa-
rated.

Proof. We have A∩B = A∩(B ∪B′) = A∩B′ since A∩B is empty. Suppose that there
exists a x ∈ A that is a limit point of B. Since A is open, there exists a neighborhood
N of x such that N ⊆ A. Since x is a limit point of B, there exists a y ∈ N such that
y ∈ B. But then y ∈ A; this is a contradiction for A and B are disjoint. Therefore
A ∩B′ is empty, and A ∩B = ∅. Similarly, B ∩ A is empty. This shows that A and B
are separated. �

Theorem 3. [Exercise 2.21] Let A and B be separated subsets of some Rk, suppose
a ∈ A, b ∈ B, and define

p(t) = (1− t) a + tb

for t ∈ R1. Put A0 = p−1(A), B0 = p−1(B). Then:

(1) A0 and B0 are separated subsets of R1.
(2) There exists a t0 ∈ (0, 1) such that p(t0) /∈ A ∪B.
(3) Every convex subset of Rk is connected.

Proof. Let x ∈ A0 so that p(x) ∈ A. Since A and B are separated, p(x) is not a limit
point of B and p(x) /∈ B. So there exists a neighborhood N of p(x) such that N ∩ B
is empty. Consider N0 = p−1(N), which is a neighborhood of x. For every y ∈ N0 we
have p(y) ∈ N which means p(y) /∈ B. But then y /∈ B0, so x cannot be a limit point
of B0. This shows that A0 ∩ B0 is empty. Similarly, B0 ∩ A0 is empty. Hence A0 and
B0 are separated.

We know that A0 ∪ B0 ⊆ (0, 1). Suppose that A0 ∪ B0 = (0, 1). Then (0, 1) is the
union of two separated sets by part (1), implying that it is disconnected. This is a
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contradiction, so A0 ∪B0 is a proper subset of (0, 1) and there exists a t0 ∈ (0, 1) such
that t0 /∈ A0 and t0 /∈ B0, i.e. p(t0) /∈ A ∪B.

Let C be a convex subset of Rk and suppose that C = A ∪ B where A and B are
separated. Choose some a ∈ A and b ∈ B. Then there exists a t0 ∈ (0, 1) such that
(1− t0) a + t0b /∈ C by statement (2). This contradicts the fact that C is a convex set.
Hence C must be connected. �

Theorem 4. [Exercise 2.23] Every separable metric space has a countable base.

Proof. Let X be a separable metric space and let Y be a countable dense subset of X.
Let B = {Vα,r} be the collection of all neighborhoods Nr(α) where α ∈ Y and r ∈ Q.
B is countable since Y ×Q is countable; we want to show that B is a base for X. Let
E be an open set in X. For every x ∈ E, there exists a neighborhood N of x with
radius r such that N ⊆ E. Let r1 be some positive rational number less than r/2 and
let N1 = Nr1(x). Since x is a limit point of Y , there exists a y ∈ N1 such that y ∈ Y .
Now let V = Nr1(y); since d(x, y) < r1, x ∈ V . Also V ⊆ N ⊆ E, since for every
v ∈ V , d(v, x) ≤ d(v, y) + d(y, x) < 2r1 < r. Since y ∈ Y and r1 ∈ Q, V ∈ B. This
shows that B is a countable base for X. �

Theorem 5. [Exercise 2.24] If X is a metric space in which every infinite subset has
a limit point, then X is separable.

Proof. Fix δ > 0 and choose x1 ∈ X. Having chosen x1, . . . , xj ∈ X, choose xj+1 ∈ X,
if possible, so that d(xi, xj+1) ≥ δ for i = 1, . . . , j. Suppose that this process does not
terminate after a finite number of steps. Then we have an infinite set S = {x1, x2, . . . }
in which d(xi, xj) ≥ δ for every j 6= i. Suppose that x0 is a limit point of S. Then
there are an infinite number elements xi ∈ S such that d(x0, xi) < δ/2. But if xi, xj are
two such elements, d(xi, xj) ≤ d(xi, x) + d(x, xj) < δ, which is a contradiction. Hence
S cannot have any limit points. This contradicts the assumption that every infinite
subset has a limit point, so the process must terminate after a finite number of steps.
Let Sδ = {x1, x2, . . . } be the set of points found by this process for some δ.

The union C = Nδ(x1) ∪ Nδ(x2) ∪ · · · covers X for if x ∈ X \ C, then x would have
been added to Sδ. Let D =

⋃∞
n=1 S1/n; we want to show that D is a countable dense

subset of X. That D is countable is clear since each S1/n is finite. Let x ∈ X and let
N be a neighborhood of x with radius r. Let n be a positive integer such that n > 1/r.
There exists some S1/n ⊆ D and some s ∈ S1/n such that N1/n(s) contains x, since⋃
s∈S1/n

N1/n(s) covers X. Now d(s, x) < 1/n < r, so s ∈ N . Therefore x is a limit

point of D. This proves that X is separable. �

Lemma 6. Let X be a metric space with a countable base. Then X is separable.
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Proof. Let V = {V1, V2, . . . } be a countable base for X. For every i choose an element
xi ∈ Vi, and let D = {x1, x2, . . . }; D is countable since V is countable. Let x ∈ X
and let N be a neighborhood of x. Then N is the union of a subcollection of V and
therefore contains some element from D. This shows that x is a limit point of D, and
that D is dense in X. �

Theorem 7. [Exercise 2.25] Every compact metric space K has a countable base, and
K is therefore separable.

Proof. Let Bn be the collection of all neighborhoods Nr(α) with r = 1/n and α ∈
K. Since Bn is an open cover of K and K is compact, there exists a finite subcover
Cn = {V1, V2, . . . , Vk} ⊂ Bn that covers K. Let C = C1 ∪ C2 ∪ · · · ; C is countable
since each Ci is countable. Let E be an open set in K. For every x ∈ E, there
exists a neighborhood N of x with radius r such that N ⊆ E. Let n be a positive
integer such that n > 2/r. There exists some neighborhood N1 ∈ Cn centered at α
such that x ∈ N1, since Cn covers K. Also, N1 ⊆ N ⊆ E since for every y ∈ N1,
d(x, y) ≤ d(x, α) + d(α, y) < 1/n+ 1/n < r. This shows that C is a countable base for
K. Lemma 6 shows that K is separable. �

Theorem 8. [Exercise 2.26] If X is a metric space in which every infinite subset has
a limit point, then X is compact.

Proof. By Theorem 5, X is separable, and by Theorem 4, X has a countable base
V = {V1, V2, . . . }. Let {Gα} be an open cover of X. For every x ∈ X, there is some
open set Gα such that x ∈ Gα. Since V is a base for X, there exists a Vi ∈ V with
x ∈ Vi ⊆ Gα. This means that there is a countable subcover {Gi} of X since each
Gα was associated with an element of V . Suppose that no finite subcollection of {Gi}
covers X. For every positive integer n, let Fn = (G1 ∪ · · · ∪Gn)c. Since {G1, . . . , Gn} is
a finite subcollection, each Fn is nonempty while

⋂∞
n=1 Fn = (

⋃∞
i=1Gi)

c
is empty since

{Gi} covers X.

Let E = {f1, f2, . . . } be a set where each fi is chosen from Fi. Since E is an infinite
subset of X, E has a limit point x. Suppose that x /∈ Fi for some i. Since F c

i is
open, there exists a neighborhood N of x with radius r such that N ∩ Fi = ∅. In fact,
N ∩ Fj = ∅ for every j ≥ i since F1 ⊇ F2 ⊇ · · · , and therefore N ∩ E is finite. But x
is a limit point of E, so N ∩ E must be infinite. This is a contradiction, and therefore
x ∈ Fi for all i. Then x ∈

⋂∞
n=1 Fn but this is a contradiction for

⋂∞
n=1 Fn is empty.

Thus there is a finite subcollection of {Gi} that covers X, and X must be compact. �

Chapter 3. Numerical Sequences and Series

Theorem 9. A sequence {pn} converges to p if and only if every subsequence of {pn}
converges to p.
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Proof. Suppose that {pn} converges to p and let {pni
} be a subsequence of {pn}. Let

ε > 0 be given. Then there exists an integer N such that for every n ≥ N , d (pn, p) < ε.
Let N ′ be the smallest i such that ni ≥ N . Then for every i ≥ N ′, d (pni

, p) < ε.
Therefore {pni

} converges to p. Conversely, suppose that every subsequence of {pn}
converges to p. {pn} is a subsequence of itself, so it converges to p. �

Theorem 10. Let {sn} and {tn} be sequences in R. If sn ≤ tn for n ≥ N where N is
some constant, if sn → s, and if tn → t, then s ≤ t.

Proof. Assume s 6= t so that |t− s| > 0, for otherwise we are done. Since sn →
s and tn → t, tn − sn → t − s. There exists a M such that for every m ≥ M ,
|tm − sm − (t− s)| < |t− s|. Whenever k ≥ max (M,N), both tk − sk ≥ 0 and tk −
sk − (t− s) < |t− s| hold. We know t− s > 0 for if t− s < 0, then tk − sk < 0 which
is a contradiction. �

Theorem 11. Let {xn} and {sn} be sequences in R. If 0 ≤ xn ≤ sn for n ≥ N where
N is some constant, and if sn → 0, then xn → 0.

Proof. Let ε > 0 be given. Since sn → 0, there exists a M such that for every n ≥ M ,
|sn| < ε. Let N ′ = max (M,N); then for every n ≥ N ′, |xn| ≤ sn ≤ ε. Therefore
xn → 0. �

Corollary 12. Let {xn} , {sn} , {s′n} be sequences in R. If sn ≤ xn ≤ s′n for n ≥ N
where N is some constant, if sn → s, and if s′n → s, then xn → s.

Theorem 13. Let {sn} , {tn} be sequences in a metric space. If sn → s and d (sn, tn)→
0, then tn → s.

Proof. Let ε > 0 be given. There exists a M such that d (sn, tn) < ε/2 whenever
n ≥ M , and there exists a N such that d (s, sn) < ε/2 whenever n ≥ N . Then for all
n ≥ max (M,N) we have

d (s, tn) ≤ d (s, sn) + d (sn, tn)

< ε.

�

Theorem 14. [Theorem 3.19] If sn ≤ tn for n ≥ N where N is fixed, then

lim sup
n→∞

sn ≤ lim sup
n→∞

tn and lim inf
n→∞

sn ≤ lim inf
n→∞

tn.

Proof. Let E1 be the set of subsequential limits of {sn} and let E2 be the set of subse-
quential limits of {tn}. Let L1 = lim supn→∞ sn and L2 = lim supn→∞ tn. If L1 = −∞
or L2 = +∞, then there is nothing to prove. Otherwise, L1 ∈ E1 and there exists a
subsequence {sni

} that converges to L1. Similarly, some
{
tn′i
}

converges to L2. Let m1
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be the minimum i such that ni ≥ N and let m2 be the minimum i such that n′i ≥ N .
Let M = max (m1,m2); then sni

≤ tn′i for all i ≥ M since sn ≤ tn whenever n ≥ N .
Theorem 10 proves the required result. The case for lim inf is similar. �

Lemma 15. Let S = {sn} be a sequence in R and let E be the set of subsequential
limits of {sn}. Then supE ∈ (−∞,+∞) if and only if S is bounded.

Proof. Suppose that S is not bounded above, i.e. for every x ∈ R there exists a si ∈ S
such that si > x. Let n1 = 1 and suppose that n1, . . . , nk have been chosen. Choose
nk+1 to be the smallest i such that i > nk and si > snk

. Then the subsequence {snk
}

approaches +∞ and hence supE = +∞. Similarly, if S is not bounded below then
supE = −∞. Conversely, if supE = +∞ then there exists a subsequence {snk

} such
that for every M , snk

≥M + 1 > M for some nk. The case for supE = −∞ is similar.
Hence S is unbounded. �

Theorem 16. [Equivalence of lim sup definitions.] Let S = {sn} be a sequence in
R, let Sn = {sn, sn+1, . . . } and let E be the set of subsequential limits of {sn}. Let
L ∈ [−∞,∞]. Then the following are equivalent:

(1) L = supE.
(2) L ∈ E and for every x > L there is an integer N such that n ≥ N implies

sn < x.
(3) L = limn→∞ supSn.

Furthermore, any L with these properties is unique.

Proof. We will show that (1) ⇔ (2) and (1) ⇔ (3). Suppose that L = supE and
let x be a number with x > L. That L ∈ supE is clear. We can now assume that
L < +∞, for if L = +∞ then there is no such x greater than L. Suppose that
sn ≥ x for infinitely many values of n; this forms a subsequence of {sn} consisting of
all sni

≥ x. Some subsequence of this subsequence converges to a value y, since sni
≥ x

and supE < +∞ implies that {sni
} is bounded by Lemma 15. Then L ≥ y ≥ x > L,

which is a contradiction. Conversely, suppose that (2) holds for L and suppose that
L < supE. Then choose x such that L < x < supE, and there is an integer N such that
n ≥ N implies sn < x. Every subsequence of {sn} must have a limit no greater than
x < supE by Theorem 10, and this contradicts the fact that supE is the least upper
bound. Therefore L ≥ supE, and since L ∈ E, L = supE. This proves (1)⇔ (2).

Let L = supE so that (2) holds. Let ε > 0 be given. There exists an integer N
such that n ≥ N implies sn < L + ε/2. Whenever n ≥ N , supSn ≤ L + ε/2 so that
supSn − L < ε. Suppose that supSn < L; we can choose x such that supSn < x < L.
Since every sk with k ≥ n has sk < x, every subsequence of {sn} must have a limit
no greater than x < supE by Theorem 10. Since L is the least upper bound of E,
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L ≤ x < L which is a contradiction. Therefore 0 ≤ supSn − L < ε, showing that
limn→∞ supSn = L. This proves (1)⇔ (3). �

Theorem 17. [Exercise 3.5] For any two real sequences {an} and {bn},

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

provided that the sum on the right is not of the form ∞−∞.

Proof. If lim supn→∞ (an + bn) = ±∞ then we are done. Otherwise, let

L = lim sup
n→∞

(an + bn) ,

L1 = lim sup
n→∞

an,

L2 = lim sup
n→∞

bn.

There is a subsequence {cni
} of {an + bn} that converges to L. For each ni, cni

= ani
+bni

for some subsequences {ani
} , {bni

} so that L = a+ b if we let a be the limit of ani
and

b be the limit of bni
. Then L = a+ b ≤ L1 + L2, which proves the result. �

Theorem 18. [Exercise 3.7] If an ≥ 0 for all n and
∑
an converges, then

∑ √
an
n

converges.

Proof. Let tn =
∑n

k=1

√
ak
k

; clearly tn ≥ 0 for all n. Let bk = 1/k, and by the Cauchy-
Schwarz inequality, (

n∑
k=1

√
ak
k

)2

≤
n∑
k=1

ak

n∑
k=1

1

k2

tn =
n∑
k=1

√
ak
k
≤

√√√√ n∑
k=1

ak

n∑
k=1

1

k2

≤
√
ab

where a = limn→∞ an and b = limn→∞ 1/n2. Thus {tn} must be a bounded sequence

and hence
∑ √

an
n

converges. �

Theorem 19. [Exercise 3.8] If
∑
an converges and {bn} is monotonic and bounded,

then
∑
anbn converges.

Proof. Suppose that {bn} is monotonically increasing and let B be the limit of {bn}
so that bn ≤ B for every n. Let C = B

∑
an −

∑
an (B − bn). Since B − bn → 0
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and {B − bn} is monotonically decreasing, we can apply Theorem 3.42 to deduce that∑
an (B − bn) converges. Then

C = B
∑

an −
∑

an (B − bn)

=
∑

anbn

converges. The case for {bn} being monotonically decreasing is similar. �

Theorem 20. [Exercise 3.10] If
∑
anz

n is a power series where infinitely many coef-
ficients are distinct from zero, then the radius of convergence is at most 1.

Proof. Suppose that the radius of convergence R > 1, i.e.
∑
anγ

n converges for some

1 < γ < R. By the root test, lim supn→∞
n
√
|anγn| = lim supn→∞ γ

n
√
|an| ≤ 1, which

means that lim supn→∞
n
√
|an| = L where L < 1. There exists some subsequence

S =
{

ni

√
|ani
|
}

that converges to L, and the neighborhood N1−L(L) contains infinitely

many points ak of S with 0 ≤ k
√
|ak| < 1. But then infinitely many points ak have

0 ≤ |ak| < 1, and thus infinitely many points are zero since each ak is an integer. This
is a contradiction, so the radius of convergence must not be greater than 1. �

Theorem 21. [Exercise 3.11] Suppose that an > 0, sn = a1 + · · · + an and that
∑
an

diverges. Then:

(1) The series
∑ an

1 + an
diverges.

(2) For all N, k ≥ 1,
aN+1

sN+1

+ · · ·+ aN+k

sN+k

≥ 1− sN
sN+k

and
∑ an

sn
diverges.

(3) For all n,
an
s2n
≤ 1

sn−1
− 1

sn
and

∑ an
s2n

converges.

(4)
∑ an

1 + nan
sometimes converges and

∑ an
1 + n2an

always converges.

Proof. Suppose that
∑

an
1+an

converges. Then limn→∞
an

1+an
= 0, and limn→∞ an = 0

(this can be shown using an ε argument). There exists an integer N such that an < 1
whenever n ≥ N , and furthermore since

∑
an

1+an
converges, for any ε > 0 there exists

an integer M such that
∑n

k=m
ak

1+ak
< ε/2 whenever n ≥ m ≥ M . Therefore whenever
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n ≥ m ≥ max (M,N),

ε > 2
n∑

k=m

ak
1 + ak

> 2
n∑

k=m

ak
1 + 1

>

n∑
k=m

ak

and
∑
an converges. This shows that

∑
an

1+an
diverges if

∑
an diverges.

For N, k ≥ 1,

sN+k − sN = aN+1 + aN+2 + · · ·+ aN+k

1− sN
sN+k

=
aN+1

sN+k

+
aN+1

sN+k

+ · · ·+ aN+k

sN+k

≤ aN+1

sN+1

+
aN+1

sN+2

+ · · ·+ aN+k

sN+k

.

Suppose that
∑

an
sn

converges. Then there exists a N such that whenever n+j ≥ n ≥ N ,

1− sn
sn+j

≤
n+j∑
k=n

an
sn

<
1

2

so that for all j, 2sn > sn+j. But {sn} is not bounded since
∑
an diverges, and there

is some j such that sn+j > 2sn. This is a contradiction, so
∑

an
sn

cannot converge.

For the third inequality,

1 <
sn
sn−1

an <
sn (sn − sn−1)

sn−1
an
s2n

<
sn − sn−1
snsn−1

=
1

sn−1
− 1

sn
.
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For any ε > 0, there is some N for which sN−1 >
1
ε

since {sn} is not bounded. Then
for all n ≥ m ≥ N ,

n∑
k=m

an
s2n

<

n∑
k=m

(
1

sn−1
− 1

sn

)
<

1

sm−1
− 1

sn

<
1

sm−1
− 1

sn
< ε

since {sn} is monotonically increasing. Hence
∑

an
s2n

converges.

The series
∑

an
1+nan

may or may not converge. If an = 1 then the series does not con-

verge, but if an = [n = m2] where [. . . ] is the Iverson bracket, then the series converges.
The series

∑
an

1+n2an
always converges since an

1+n2an
= 1

an+n2 <
∑

1
n2 and the series on

the right hand side converges. �

Theorem 22. [Exercise 3.12] Suppose that an > 0 and that
∑
an converges. Let

rn =
∑∞

m=n am. Then:

(1) If m < n then
am
rm

+ · · ·+ an
rn

> 1− rn
rm

, and
∑ an

rn
diverges.

(2) For any n,
an√
rn

< 2 (
√
rn −

√
rn+1), and

∑ an√
rn

converges.

Proof. If m < n then

rm − rn < am + am+1 + · · ·+ an

1− rn
rm

<
am
rm

+
am+1

rm
+ · · ·+ an

rm

<
am
rm

+
am+1

rm+1

+ · · ·+ an
rn
.

Suppose that
∑

an
rn

converges. Then there exists an integer N such that for all n ≥
m ≥ N ,

1− rn
rm

<
n∑

k=m

ak
rk

<
1

2

so that for all n > m, 2rn > rm. Since
∑
an converges, an → 0 which means rn → 0.

Hence we can find an integer n such that rn < rm/2, which is a contradiction. This
shows that

∑
an
rn

does not converge.
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To prove the second inequality,

4rn (rn − an) < 4r2n − 4anrn + a2n

= (2rn − an)2

2
√
rn
√
rn − an < 2rn − an

an < 2
(
rn −

√
rn
√
rn − an

)
an√
rn

< 2 (
√
rn −

√
rn+1) .

For any ε > 0, there exists some integer N such that rN <
(
ε
2

)2
since rn → 0. Then for

all n ≥ m ≥ N ,

n∑
k=m

ak√
rk
< 2

n∑
k=m

(
√
rk −

√
rk+1)

< 2 (
√
rm −

√
rn+1)

< ε

since {rn} is monotonically decreasing. Hence
∑

an√
rn

converges. �

Theorem 23. [Exercise 3.13] The Cauchy product of two absolutely convergent series
converges absolutely.

Proof. Let
∑
an and

∑
bn be two absolutely convergent series; we have

∑
|an| ≤ M1

and
∑
|bn| ≤M2 for some M1,M2. Let cn =

∑n
k=0 akbn−k. For all n,

n∑
k=0

|ck| =
n∑
k=0

∣∣∣∣∣
k∑
j=0

ajbk−j

∣∣∣∣∣
≤

n∑
k=0

k∑
j=0

|aj| |bk−j|

=
∑

0≤j≤k≤n

|aj| |bk−j|

≤
∑

0≤j,k≤n

|aj| |bn−j|

=

(
n∑
j=0

|aj|

)(
n∑
k=0

|bk|

)
≤M1M2
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so that sequence of partial sums of
∑
|cn| is bounded. Therefore

∑
cn converges abso-

lutely. �

Theorem 24. [Exercise 3.20] Let {pn} be a Cauchy sequence in a metric space X where
some subsequence {pni

} converges to a point p ∈ X. Then the sequence {pn} converges
to p.

Proof. Let ε > 0 be given. There exists some N such that for all m,n ≥ N , d (pm, pn) <
ε/2. Also, there exists some K such that for all k ≥ K, d (pnk

, p) < ε/2. Let j be
the smallest integer such that nj ≥ max (N, nK). Then for all n ≥ nj, d (pn, p) ≤
d
(
pn, pnj

)
+ d

(
pnj

, p
)
< ε. This shows that pn → p. �

Theorem 25. [Exercise 3.21] If {En} is a sequence of closed, nonempty and bounded

sets in a complete metric space X, if En ⊇ En+1, and if lim
n→∞

diam En = 0, then
∞⋂
n=1

En

consists of exactly one point.

Proof. Let {pn} be a sequence where each pi is a point chosen from Ei. Let ε > 0
be given. Since diam En → 0, there exists some N such that diam En < ε whenever
n ≥ N . Then for all m,n ≥ N , d (pm, pn) < ε since pm, pn ∈ EN . This shows that
{pn} is a Cauchy sequence, and since X is complete, {pn} converges. Suppose that
p /∈ Ei for some i. Then p ∈ Ec

i and since Ec
i is open, there exists some neighborhood

N of p with radius r such that N ∩ Ei = ∅. In fact, N ∩ Ej = ∅ for every j ≥ i since
E1 ⊇ E2 ⊇ · · · . Since {pn} converges to p, there exists some M such that d (pm, p) < r
whenever m ≥ M . Let k = max (i,M) and consider pk; we have pk ∈ Ek but pk ∈ N
since k ≥M , which means that pk /∈ Ei and pk /∈ Ek. This is a contradiction, so p ∈ Ei
for all i, i.e.

⋂∞
n=1En is nonempty. Furthermore, since diam En → 0,

⋂∞
n=1En must

consist of exactly one point. �

Theorem 26. [Exercise 3.22, Baire’s theorem] If X is a nonempty complete metric

space, and {Gn} is a sequence of dense open subsets of X, then
∞⋂
n=1

Gn is not empty.

Proof. Let g1 be a point in G1 and let N1 be a neighborhood of g1 wholly contained in
G1. Let E1 be a neighborhood of g1 such that E1 ⊆ N1. Having constructed E1, . . . , En
such that E1 ⊇ · · · ⊇ En and Ei+1 ⊂ Ei ⊆ Gi for each i, let gn be the center of
En. Since Gn+1 is dense in X, En contains a point gn+1 ∈ Gn+1. Let En+1 be a
neighborhood of gn+1 such that En+1 ⊂ En. We can continue this process to obtain a
sequence E1 ⊇ E2 ⊇ · · · . By Theorem 25, there is exactly one point x ∈

⋂∞
n=1En. But

we have Ei ⊆ Gi for each i, which means that x ∈
⋂∞
n=1Gn and therefore

⋂∞
n=1Gn is

not empty. �



12

Theorem 27. [Exercise 3.23] Let {pn} and {qn} be Cauchy sequences in a metric space
X. Then the sequence {d (pn, qn)} converges.

Proof. Let ε > 0 be given. There exists, by taking a maximum, an integer N such that
for all m,n ≥ N , d (pm, pn) < ε/2 and d (qm, qn) < ε/2. Then

d (pn, qn) ≤ d (pn, pm) + d (pm, qm) + d (qm, qn)

d (pn, qn)− d (pm, qm) ≤ d (pn, pm) + d (qm, qn)

and similarly,

d (pm, qm) ≤ d (pm, pn) + d (pn, qn) + d (qn, qm)

d (pm, qm)− d (pn, qn) ≤ d (pm, pn) + d (qn, qm) .

This shows that

|d (pn, qn)− d (pm, qm)| ≤ d (pm, pn) + d (qn, qm)

< ε

which means that {d (pn, qn)} converges. �

Theorem 28. [Exercise 3.24] Let X be a metric space.

(1) Call two Cauchy sequences {pn} , {qn} in X equivalent if limn→∞ d (pn, qn) = 0.
This is an equivalence relation.

(2) Let X∗ be the set of all equivalence classes obtained by the above equivalence
relation. If P ∈ X∗, Q ∈ X∗, {pn} ∈ P , {qn} ∈ Q, define 4 (P,Q) =
limn→∞ d (pn, qn). The number 4 (P,Q) is unchanged if {pn} and {qn} are
replaced by equivalent sequences, and hence that 4 is a distance function in
X∗.

(3) The metric space X∗ is complete.
(4) For each p ∈ X, there is a Cauchy sequence all of whose terms are p; let Pp be

the element of X∗ which contains this sequence. Then 4 (Pp, Pq) = d (p, q) for
all p, q ∈ X.

(5) Let ϕ : X → X∗ be given by p 7→ Pp where Pp is the element of X∗ which
contains a sequence with all terms equal to p. Then ϕ (X) is dense in X∗, and
if X is complete, then ϕ (X) = X∗.

(6) The completion of Q is R.

Proof. It is obvious that that the relation is reflexive and symmetric. Let {pn} , {qn} , {rn}
be sequences such that limn→∞ d (pn, qn) = 0 and limn→∞ d (qn, rn) = 0. Let ε > 0 be
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given. There exists, by taking a maximum, an integer N such that for all n ≥ N ,
d (pn, qn) < ε/2 and d (qn, rn) < ε/2. Then

d (pn, rn) ≤ d (pn, qn) + d (qn + rn)

< ε,

which shows that limn→∞ d (pn, rn) = 0. Therefore the relation is transitive.

Let P ∈ X∗, Q ∈ X∗, {pn} ∈ P , {qn} ∈ Q. Let {p′n} ∈ P and {q′n} ∈ Q be sequences
equivalent to {pn} and {qn} respectively. We must show that limn→∞ d (pn, qn) =
limn→∞ d (p′n, q

′
n). Since both limits exist, it suffices to prove that

lim
n→∞

[d (pn, qn)− d (p′n, q
′
n)] = 0.

From the equivalence of the sequences, we have for any ε > 0 an integer N such that
for all n ≥ N , d (pn, p

′
n) < ε/2 and d (qn, q

′
n) < ε/2. Then

d (pn, qn) ≤ d (pn, p
′
n) + d (p′n, q

′
n) + d (qn, q

′
n)

d (pn, qn)− d (p′n, q
′
n) ≤ d (pn, p

′
n) + d (qn, q

′
n)

< ε

and by symmetry (compare Theorem 27), |d (pn, qn)− d (p′n, q
′
n)| < ε. Therefore

lim
n→∞

[d (pn, qn)− d (p′n, q
′
n)] = 0,

which proves that 4 : X∗ ×X∗ → R is well-defined. It is simple to verify that 4 is a
metric in X∗.

Let {Pn} be a Cauchy sequence in X∗; write Pn = [{pn,m}] where {pn,m} is a sequence
in m. For any ε > 0 there exists some N such that for all m,n ≥ N , 4 (Pm, Pn) < ε.
Incomplete.

Let p, q ∈ X. Then 4 (Pp, Pq) = limn→∞ d (pn, qn) = d (p, q) by definition.

Let Y = ϕ (X) and let P = [{pk}] ∈ X∗ (where {pk} is a representative from the
equivalence class), supposing that P /∈ Y . Let N be a neighborhood of P with radius r.
There exists some M such that for all m,n ≥M , d (pm, pn) < r. Let Q = ϕ (pM) ∈ Y .
We want to show that Q ∈ N ; we have d (pn, pM) < r whenever n ≥M , and therefore

4 (P,Q) = lim
n→∞

d (pn, pM) < r.

This proves that ϕ (X) is dense in X∗. Second part incomplete. �
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Chapter 4. Continuity

Theorem 29. Let X ⊆ R, f, g : X → R and let a be a limit point of X. If f(x) ≤ g(x)
for all x in a neighborhood of a, then

lim
x→a

f(x) ≤ lim
x→a

g(x),

provided that both limits exist.

Proof. Let N be a neighborhood of a with radius r such that f(x) ≤ g(x) for all
x ∈ N . Suppose that limx→a[g(x)− f(x)] = L < 0. Then there exists a δ > 0 such that
|g(x)− f(x)− L| < −L and g(x) < f(x) whenever 0 < |x− a| < δ. Choose a point x
such that 0 < |x− a| < min(δ, r); this results in a contradiction. �

Corollary 30. Let f, g : [a,∞)→ R. If f(x) ≤ g(x) for all x ≥ a, then

lim
x→∞

f(x) ≤ lim
x→∞

g(x),

provided that both limits exist.

Theorem 31. [Theorem 4.8] A mapping f of a metric space X into a metric space Y
is continuous on X if and only if f−1 (V ) is open in X for every open set V in Y .

Proof. Suppose that f is continuous on X. Let V be an open set in Y and let p ∈
f−1 (V ). There exists a neighborhood N of f (p) with radius r wholly contained in V .
Since f is continuous, there exists a δ > 0 such that dY (f (p) , f (x)) < r whenever
x ∈ X and dX (p, x) < δ. Therefore, Nδ (p) is an open set of X wholly contained in
f−1 (V ). This shows that f−1 (V ) is an open set. Conversely, suppose that f−1 (V ) is
open in X for every open set V in Y . Let p ∈ X and let ε > 0 be given. Let V be a
neighborhood of f (p) with radius ε so that f−1 (V ) is open in X. Since p ∈ f−1 (V ),
there exists a neighborhood N of p with radius δ such that N is wholly contained in
f−1 (V ). Then for all x ∈ X with dX (p, x) < δ, we have dY (f (p) , f (x)) < ε since
x ∈ f−1 (V ) and f (x) ∈ V . This shows that f is continuous on X. �

Theorem 32. [Examples 4.11] The map x 7→ |x| is continuous.

Proof. Let ε > 0 be given and let x, y ∈ Rk be arbitrary. Whenever |x− y| < ε, we
have ||x| − |y|| ≤ |x− y| < ε, which completes the proof. �

Theorem 33. [Exercise 4.2] Let f be a continuous map from a metric space X to a
metric space Y . Then for every set E ⊆ X,

f
(
E
)
⊆ f (E).

Furthermore, this inclusion can be proper for certain functions.
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Proof. Let p ∈ f
(
E
)
; we must show that either p ∈ f (E) or p is a limit point of f (E).

If there is a x ∈ E with p = f (x), then we are done. Otherwise, p /∈ f (E), and we can
choose x with p = f (x) such that x is a limit point of E. Let N be a neighborhood of p
with radius r. Since f is continuous, there exists a δ > 0 such that for all y ∈ Nδ (x) we
have f (y) ∈ N . Since x is a limit point of E, there exists a z in Nδ (x) with z ∈ E so
that f (z) ∈ N . Furthermore, f (z) 6= p since we assumed that p /∈ f (E). This shows
that p is a limit point of f (E).

The inclusion can be proper, as in the following example. Let f : (0, 1)→ R be defined

by x 7→ x; then f
(

(0, 1)
)

= (0, 1) 6= [0, 1] = f ((0, 1)). �

Theorem 34. [Exercise 4.3] Let f be a continuous map from a metric space X to R.
Let Z(f) be the set of all p ∈ X such that f (p) = 0. Then Z(f) is closed.

Proof. By definition Z (f) = f−1 ({0}). Since {0} is closed and f is continuous, Z (f)
must be closed. �

Theorem 35. [Exercise 4.4] Let f and g be continuous mappings from a metric space
X to a metric space Y , and let E be a dense subset of X. Then

(1) f (E) is dense in f (X), and
(2) If g (p) = f (p) for all p ∈ E then g (p) = f (p) for all p ∈ X.

Proof. We know that E ⊆ X, and since E is dense in X, X ⊆ E. By Theorem 33, we
have f

(
E
)

= f (X) ⊆ f (E), which shows that f (E) is dense in f (X).

To prove (2), let p ∈ X. Since E is dense in X, either p ∈ E or p is a limit point
of E. If p ∈ E, then from the assumptions we are done. Otherwise, fix ε > 0.
Since f is continuous, there exists a δ1 > 0 such that for every x ∈ Nδ1 (p) we have
f (x) ∈ Nε (f (p)). Similarly, there exists a δ2 > 0 such that for every x ∈ Nδ2 (p) we
have g (x) ∈ Nε (g (p)). Let δ = min (δ1, δ2). Since p is a limit point of E, there exists
a point z ∈ Nδ (p) with z ∈ E. Then f (z) ∈ Nε (f (p)) and f (z) = g (z) ∈ Nε (g (p))
so that

d (f (p) , g (p)) ≤ d (f (p) , f (z)) + d (f (z) , g (p))

< 2ε.

Since ε was arbitrary, f (p) = g (p). �

Theorem 36. [Exercise 4.6] Let E be a subset of R. Define the graph of a function
f : E → R to be the set {(x, f (x)) | x ∈ E}. If E is compact, then a function f : E → R
is continuous if and only if its graph is compact.
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Proof. Let G be the graph of f and let g : E → G be given by x 7→ (x, f (x)).
Clearly, g is a bijection by definition. Suppose that f is continuous. Since x 7→ x
is continuous, by Theorem 4.10 we have that g is continuous. By Theorem 4.14, the
image of g is compact, which proves the result. Conversely, suppose that the graph G
is compact. Let V be a closed set in R; we want to show that f−1 (V ) is closed. Let p
be a limit point of f−1 (V ). By Theorem 3.2, there exists a sequence {pn} in f−1 (V )
that converges to p. Consider the sequence {(pn, f (pn))}; since G is compact, some
subsequence {(pni

, f (pni
))} converges to some (p, y) ∈ G, and by definition, y = f (p).

Now {f (pni
)} is a sequence in V , and since V is closed and the sequence converges

to f (p), we have f (p) ∈ V . Therefore p ∈ f−1 (V ), which shows that f−1 (V ) is
closed. �

Theorem 37. [Exercise 4.8] Let E be a bounded set in R and let f : E → R be a
uniformly continuous function. Then f is bounded on E. If E is not bounded, then the
conclusion does not necessarily hold.

Proof. We can choose M,N so that M < x < N for all x ∈ E. Since f is uniformly
continuous, there exists a δ > 0 such that |f (x)− f (y)| < 1 whenever |x− y| < δ.
Choose n so that N −M + δ > (n+ 1)δ ≥ N −M . For every x ∈ E, there is an integer
k with 0 ≤ k ≤ n such that |M + kδ − x| < δ. Then |f (M + kδ)− f (x)| < 1 which
means |f (x)| < 1 + |f (M + kδ)|. Now take

P = min
0≤k≤n

|f (M + kδ)|

where k = 0, 1, . . . , n; we have |f (x)| < 1 + P for all x ∈ E and hence f is bounded on
E.

To show that E must be bounded for the conclusion to hold, choose f (x) = x, which
is uniformly continuous, and E = R. �

Theorem 38. [Exercise 4.9] Let f : X → Y . Then the following statements are
equivalent:

(1) f is uniformly continuous.
(2) For every ε > 0 there exists a δ > 0 such that diam f (E) < ε whenever E ⊆ X

and diam E < δ.

Proof. Obvious. �

Theorem 39. Let X and Y be metric spaces. Let f : X → Y be a continuous function.
If {sn} is a sequence in X that converges to s, then {f (sn)} converges to f (s).

Proof. Let ε > 0 be given. Then there exists a δ > 0 such that d (f (s) , f (x)) < ε
whenever d (s, x) < δ. Since sn → s, there exists a N such that for all n ≥ N we
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have d (s, sn) < δ. Then d (f (s) , f (sn)) < ε whenever n ≥ N , which completes the
proof. �

Theorem 40. Let X, Y, Z be metric spaces. Let f : X → Y be a function with
limx→a f(x) = b and let g : Y → Z be continuous at b. Then limx→a g(f(x)) = g(b).

Proof. Let ε > 0 be given. Choose δ > 0 such that dZ(g(x), g(b)) < ε whenever
dY (x, b) < δ, and choose γ > 0 such that dY (f(x), b) < δ whenever 0 < dX(x, a) < γ.
Then dZ(g(f(x)), g(b)) < ε whenever 0 < dX(x, a) < γ. �

Theorem 41. Let X and Y be metric spaces. Let f : X → Y be a function with

lim
x→a

f(x) = L.

If F is any neighborhood of a and g : E → F is a continuous bijection where g−1(a) is
a limit point of E, then

lim
x→g−1(a)

f(g(x)) = L.

Proof. For every ε > 0, there exists a δ > 0 such that d(f(x), L) < ε whenever 0 <
d(x, a) < δ. Since g is continuous on E, there exists a γ > 0 such that d(g(x), a) < δ
whenever d(x, g−1(a)) < γ. Then for all x with 0 < d(x, g−1(a)) < γ we have 0 <
d(g(x), a) < δ, noting that d(g(x), a) = 0 if and only if d(x, g−1(a)) = 0, since g is a
bijection. Therefore, d(f(g(x)), L) < ε, which completes the proof. �

Theorem 42. [Exercise 4.10] Let X be a compact metric space and let Y be a metric
space. If f : X → Y is a continuous function, then f is also uniformly continuous.

Proof. Suppose that f is not uniformly continuous. Then there exists a ε > 0 such that
for every δ > 0 we have some E ⊆ X with diam E < δ such that diam f (E) ≥ ε > γ,
where γ = ε/2. Let δn = 1/n; for each n we have points pn, qn ∈ X such that
dX (pn, qn) < δn and dY (f (pn) , f (qn)) > γ. Since X is compact, some subsequence
{pni
} converges to a point p ∈ X. By Theorem 39, the sequence {f (pni

)} converges
to f (p). Similarly we have qni

→ p and f (qni
) → f (p) upon application of Theorem

13 and Theorem 39. Now there exist integers M,N such that dY (f (p) , f (pni
)) < γ/2

whenever ni ≥ M , and dY (f (p) , f (qni
)) < γ/2 whenever ni ≥ N . Taking ni to be an

integer with ni ≥ max (M,N), we find that

dY (f (pni
) , f (qni

)) ≤ dY (f (pni
) , f (p)) + dY (f (p) , f (qni

))

< γ,

which is a contradiction. �

Theorem 43. [Exercise 4.11] Let X and Y be metric spaces. If f : X → Y is a uni-
formly continuous function, then {f (xn)} is a Cauchy sequence in Y for every Cauchy
sequence {xn} in X.
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Proof. Let {xn} be a Cauchy sequence in X. Let ε > 0 be given. Since f is uniformly
continuous, there exists a δ > 0 such that d (f (x) , f (y)) < ε whenever d (x, y) < δ.
Since {xn} is a Cauchy sequence, there exists a N such that d (xi, xj) < δ whenever
i, j ≥ N . Then for all i, j ≥ N we have d (f (xi) , f (xj)) < ε, which completes the
proof. �

Theorem 44. [Exercise 4.12] Let X, Y, Z be metric spaces. If f : X → Y and g : Y →
Z are uniformly continuous functions, then h = g ◦ f is uniformly continuous.

Proof. Let ε > 0 be given. There exists a δ1 > 0 such that dZ (g (x) , g (y)) < ε
whenever dY (x, y) < δ1. There also exists a δ2 > 0 such that dY (f (x) , f (y)) < δ1
whenever dX (x, y) < δ2. Then for all x, y with dX (x, y) < δ2 we have

dY (f (x) , f (y)) < δ1

and

dZ (g (f (x)) , g (f (y))) = dZ (h (x) , h (y)) < ε.

�

Lemma 45. Let X, Y be metric spaces and let f : X → Y be a uniformly continuous
function. Let {xn} , {yn} be sequences in X that both converge to x ∈ X. If f (xn)→ y
and f (yn)→ z, then y = z.

Proof. Fix ε > 0. Since f is uniformly continuous, there is some δ > 0 such that
d (f (a) , f (b)) < ε/3 whenever d (a, b) < δ. For some N we have d (x, xn) < δ/2 and
d (x, yn) < δ/2 whenever n ≥ N , so that

d (xn, yn) ≤ d (xn, x) + d (x, yn)

< δ

and therefore d (f (xn) , f (yn)) < ε/3 whenever n ≥ N . Furthermore, there exist
integers N1, N2 such that d (y, f (xn)) < ε/3 whenever n ≥ N1 and d (z, f (yn)) < ε/3
whenever n ≥ N2. Setting n = max {N,N1, N2}, we have

d (y, z) ≤ d (y, f (xn)) + d (f (xn) , z)

≤ d (y, f (xn)) + d (f (xn) , f (yn)) + d (f (yn) , z)

< ε.

Since ε was arbitrary, y = z. �

Theorem 46. [Exercise 4.13] Let E be a dense subset of a metric space X, and let
f : E → R be a uniformly continuous function. Then f has a continuous extension
from E to X.
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Proof. We will define g : X → R as follows. Let x ∈ X. Since E is dense in X, there
exists a sequence {xn} in E that converges to x. Then {xn} is a Cauchy sequence, and
by Theorem 43, {f (xn)} is a Cauchy sequence in R. By Theorem 3.11, there exists
some y ∈ R such that f (xn) → y. We may then define g (x) = y in this manner,
noting that it is well-defined by Lemma 45. Now we will prove that g is continuous.
Let ε > 0 and x ∈ X be given. Since f is uniformly continuous, there exists a δ > 0
such that d (f (x) , f (x′)) < ε/3 whenever d (x, x′) < δ. As in our construction of g,
there exists a sequence {xn} in E that converges to x, while f (xn)→ y for some y ∈ R.
Then there exists a M such that for every n ≥ M we have d (y, f (xn)) < ε/3. Now
let x′ ∈ X with d (x, x′) < δ. There exists a sequence {x′n} in E that converges to x′,
while f (x′n) → y′ for some y′ ∈ R. Then there exists a N such that for every n ≥ N
we have d (y′, f (x′n)) < ε/3. Now take n = max (M,N), and then

d (f (x) , f (x′)) = d (y, y′)

≤ d (y, f (xn)) + d (f (xn) , f (x′n)) + d (f (x′n) , y′)

< ε.

This shows that g is a continuous extension of f from E to X. Note that we may
replace the range of f with any complete metric space. �

Theorem 47. [Exercise 4.14] Let I = [0, 1] be the closed unit interval. If f : I → I is
a continuous function, then f (x) = x for at least one x ∈ I.

Proof. Let g : [0, 1] → R be defined by g (x) = f (x) − x. If f (0) = 0 or f (1) = 1
then we are done. Therefore, we may assume that f (0) > 0 and f (1) < 1. We have
g (0) = f (0) > 0 while g (1) = f (1)− 1 < 0. By the intermediate value theorem, there
exists a x ∈ (0, 1) such that g (x) = 0, i.e. f (x) = x. �

Lemma 48. If a function f : R→ R is not monotonic, then there exist points p1, p2, p3
such that p1 < p2 < p3, and either f (p1) , f (p3) < f (p2) or f (p1) , f (p3) > f (p2).

Proof. If f is not monotonic, then there exist points x1, y1, x2, y2 such that x1 < y1,
f (x1) < f (y1), x2 < y2, f (x2) > f (y2). We can construct a list of all possible orderings
to prove the result. �

Theorem 49. [Exercise 4.15] Every continuous open map from R to R is monotonic.

Proof. Let f : R→ R be a continuous open map. Suppose that f is not monotonic. By
Lemma 48, there exist points p1, p2, p3 such that p1 < p2 < p3, and either f (p1) , f (p3) <
f (p2) or f (p1) , f (p3) > f (p2). Assume without loss of generality that f (p1) , f (p3) <
f (p2), and let M = sup f ([p1, p3]). Then by Theorem 4.16 there exists a point x ∈
[p1, p3] such that f (x) = M . Let V = (p1, p3); then x ∈ V since f (p1) , f (p3) <
f (p2) ≤ M . Since f is an open map, f (V ) is open, and there exists a neighborhood
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N of f (x) with radius r such that N ⊆ f (V ). Then f (x) + r/2 ∈ f (V ), which means
that f (x′) > M for some x′ ∈ V . This is a contradiction, so f must be monotonic. �

Theorem 50. [Exercise 4.17] The set of points at which a function f : (a, b)→ R has
a simple discontinuity is at most countable.

Proof. Let E the set of all x ∈ (a, b) such that f (x−) < f (x+). For each x ∈ E,
associate with x a triple (p, q, r):

(1) Choose p ∈ Q so that f (x−) < p < f (x+).
(2) There exists a δ > 0 such that |f (t)− f (x−)| < p− f (x−) whenever x− δ <

t < x. Choose q ∈ Q so that x− δ < q < x. Then whenever a < q < t < x we
have f (t) < p.

(3) There exists a δ > 0 such that |f (x+)− f (t)| < f (x+)− p whenever x < t <
x + δ. Choose r ∈ Q so that x < r < x + δ. Then whenever x < t < r < b we
have f (t) > p.

Now we must prove that each triple is associated with at most one x ∈ E. Let x, y ∈ E
such that x, y are both associated with the triple (p, q, r). We obtain four inequalities:

f (t) < p whenever a < q < t < x,

f (t) > p whenever x < t < r < b,

f (t) < p whenever a < q < t < y,

f (t) > p whenever y < t < r < b.

Suppose that x < y. We can choose u with x < u < y. Since x < u < r, we
have f (u) > p, and since q < u < y, we have f (u) < p, which is a contradiction.
Similarly, we obtain a contradiction if x > y. Therefore x = y. Let F be the set of
all x ∈ (a, b) such that f (x−) > f (x+); we can again associate with x ∈ F a triple
(p, q, r). For the last kind of simple discontinuity, let G be the set of all x ∈ (a, b) such
that f (x−) = f (x+) but f (x) 6= f (x−) , f (x+). For each x ∈ G, associate with x a
tuple (q, r) where q, r are defined in a similar way to the triples (p, q, r) associated with
E. The sets E,F,G are all countable, so the result follows. �

Theorem 51. [Exercise 4.19] Let f : R→ R be a function with the following property:
if f (a) < c < f (b), then f (x) = c for some x ∈ (a, b). Also, for every r ∈ Q, the set
of all x with f (x) = r is closed. Then f is continuous.

Proof. Suppose that f is not continuous. Then there exist ε > 0 and x ∈ R such that
for all δ > 0 we have |x− y| < δ and |f (x)− f (y)| ≥ ε for some y. Put δn = 1/n
to form a sequence xn → x while |f (x)− f (xn)| ≥ ε for all n. Either xn has a
infinite number of points with f (x) < f (xn), or an infinite number of points with
f (xn) < f (x). Assume without loss of generality that the former holds, so that there
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exists a subsequence xni
→ x with f (x) + ε ≤ f (xn) for all n. Let r be some rational

number with f (x) < r < f (x) + ε. For all n we have f (x) < r < f (xn); by the given
property of f , there exists a tn ∈ (x, xn) with f (tn) = r, and with the sequence tn
converging to x since xn → x. Let E be the set of all a with f (a) = r. Since tn → x
and f (tn) = r, we have that x is a limit point of E. But f (x) < r, so E is not closed.
This is a contradiction, and therefore f must be continuous. �

Theorem 52. [Exercise 4.20] If E is a nonempty subset of a metric space X, define
the distance from x ∈ X to E by

pE (x) = inf
z∈E

d (x, z) .

Then:

(1) pE (x) = 0 if and only if x ∈ E.
(2) pE is a uniformly continuous function on X.

Proof. Suppose that pE (x) = 0 and x /∈ E. Let N be a neighborhood of x with radius
r; by definition of the infimum, N contains a point z ∈ E with d (x, z) < r (and z 6= x).
Hence x is a limit point of E. Conversely, suppose that pE (x) = L with L > 0. Clearly
x /∈ E since d (x, x) = 0. Also, x is not a limit point of E since the neighborhood NL (x)
contains no points in E. Therefore x /∈ E.

Fix x, y ∈ X. Then for all z ∈ E we have

pE (x) ≤ d (x, z) ≤ d (x, y) + d (y, z) .

Therefore d (y, z) ≥ pE (x)−d (x, y) for all z, which means that pE (y) ≥ pE (x)−d (x, y).
Similarly, pE (x) ≥ pE (y)− d (x, y), and thus

|pE (x)− pE (y)| ≤ d (x, y) .

Whenever d (x, y) < ε we have |pE (x)− pE (y)| < ε, which shows that pE is uniformly
continuous. �

Theorem 53. [Exercise 4.21] Let K and F be disjoint sets in a metric space X, with
K compact and F closed. Then there exists a δ > 0 such that d (p, q) > δ for all p ∈ K
and q ∈ F .

Proof. Consider the map pF : K → R defined in Theorem 52. Suppose that pF (x) = 0
for some x ∈ K. Then by Theorem 52, x ∈ F = F , which is a contradiction. Therefore
pF (x) > 0 for all x ∈ K. Let D = pF (K); since K is compact, D is compact, and
additionally D is closed by the Heine-Borel theorem. Since 0 ∈ Dc and Dc is open,
there exists a neighborhood N of 0 with radius r > 0 such that N ⊆ Dc. Therefore,
pF (x) ≥ r for all x ∈ K, and the result follows. �
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Theorem 54. [Exercise 4.23] If f : (a, b) → R is a convex function and a < s < t <
u < b, then

(*)
f (t)− f (s)

t− s
≤ f (u)− f (s)

u− s
≤ f (u)− f (t)

u− t
and f is continuous. Additionally, every increasing convex function of a convex function
is convex.

Proof. We have

t =
t− s
u− s

u+

(
1− t− s

u− s

)
s

=
u− t
u− s

s+

(
1− u− t

u− s

)
u.

Then

f (t) ≤ t− s
u− s

f (u) +

(
1− t− s

u− s

)
f (s)

f (t)− f (s)

t− s
≤ f (u)− f (s)

u− s
and

f (t) ≤ u− t
u− s

f (s) +

(
1− u− t

u− s

)
f (u)

f (u)− f (s)

u− s
≤ f (u)− f (t)

u− t
.

Let x ∈ (a, b) and choose δ so that [x− δ, x+ δ] ∈ (a, b). Let y ∈ (x− δ, x+ δ) \ {x}.
We want to show that the following inequality holds:

f (x)− f (x− δ)
δ

≤ f (x)− f (y)

x− y
≤ f (x+ δ)− f (x)

δ
.

If y < x, then applying (*) on x − δ < y < x and y < x < x + δ produces the result.
Similarly, if y > x then applying (*) on x − δ < x < y and x < y < x + δ produces
the result. Then for all y ∈ (x− δ, x+ δ), |f (x)− f (y)| ≤ C |x− y| for some positive
constant C. This proves that f is continuous.

Let g : (c, d)→ R be an increasing convex function where the range of f is a subset of
(c, d). Then for all x, y ∈ (a, b) and λ ∈ (0, 1),

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y)

g (f (λx+ (1− λ) y)) ≤ g (λf (x) + (1− λ) f (y))

≤ λg (f (x)) + (1− λ) g (f (y)) ,
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which shows that g ◦ f is convex. �

Definition 55. Let I be an interval in R. A function f : I → R is midpoint convex
if

f

(
x+ y

2

)
≤ f(x) + f(y)

2

for all x, y ∈ I. A binary sequence is a sequence {bn} where every bn is either 0 or 1.

Lemma 56. Let f : [0, 1]→ R be a midpoint convex function and let {bn} be a binary
sequence. Let λn =

∑n
k=1 bk2

−k. Then

f(λn) ≤ λnf(1) + (1− λn)f(0).

Proof. We first use induction on n to prove that

f

(
n∑
k=1

bk2
−k

)
≤

n∑
k=1

f(bk)2
−k + f(0)2−n

for any binary sequence {bn}. If n = 1 and b1 ∈ {0, 1}, then

f

(
b1
2

)
= f

(
0 + b1

2

)
≤ 1

2
f (b1) +

1

2
f(0)

since f is midpoint convex. Otherwise, assuming the statement for n− 1, we have for
any binary sequence {bn},

f

(
n∑
k=1

bk2
−k

)
= f

(
1

2

[
b1 +

n∑
k=2

bk2
−k+1

])

≤ 1

2
f(b1) +

1

2
f

(
n∑
k=2

bk2
−k+1

)

≤ 1

2
f(b1) +

1

2

n∑
k=2

f(bk)2
−k+1 + f(0)2−n

=
n∑
k=1

f(bk)2
−k + f(0)2−n,
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which proves the statement for all n. We now compute

1− λn =
∞∑
k=1

2−k −
n∑
k=1

bk2
−k

=
n∑
k=1

(1− bk)2−k +
∞∑

k=n+1

2−k

=
n∑
k=1

(1− bk)2−k + 2−n

so that

λnf(1) + (1− λn)f(0) =
n∑
k=1

f(1)bk2
−k +

n∑
k=1

f(0)(1− bk)2−k + f(0)2−n

=
n∑
k=1

f(bk)2
−k + f(0)2−n

since bk is always 0 or 1, and f(1)bk +f(0)(1− bk) is always equal to f (bk). This proves
the result. �

Theorem 57. [Exercise 4.24] Let f : (a, b) → R be a continuous, midpoint convex
function. Then f is convex.

Proof. We first prove a smaller result for any continuous, midpoint convex function
g : [0, 1] → R. Let λ ∈ (0, 1) and let {bn} be a binary expansion of λ so that if
λn =

∑n
k=1 bk2

−k, then λn → λ. By Lemma 56, we have g(λn) ≤ λng(1) + (1−λn)g(0),
and by Theorem 39, g(λn)→ g(λ). Therefore by Theorem 10,

(*) g(λ) ≤ λg(1) + (1− λ)g(0).

For the general case, let x, y ∈ (a, b) and let λ ∈ (0, 1). If x = y, then we are done.
Otherwise, assume without loss of generality that x < y. Define g : [0, 1] → R by
g(λ) = f(λy + (1− λ)x). For any λ1, λ2 ∈ [0, 1], we have

g

(
λ1 + λ2

2

)
= f

(
x+

λ1 + λ2
2

(y − x)

)
= f

(
[λ1y + (1− λ2)x] + [λ2y + (1− λ2)x]

2

)
≤ g(λ1) + g(λ2)

2
,
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which shows that g is midpoint convex. By (*),

g(λ) ≤ λg(1) + (1− λ)g(0)

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)

for all λ ∈ (0, 1). This proves that f is convex. �

Theorem 58. [Exercise 4.26] Let X, Y, Z be metric spaces with Y compact. Let f :
X → Y such that f(X) ⊆ Y , and let g : Y → Z be a continuous, injective function.
Let h : X → Z be defined by h(x) = g(f(x)). Then:

(1) If h is uniformly continuous, then f is uniformly continuous.
(2) If h is continuous, then f is continuous.

Proof. Suppose that h is uniformly continuous. Since g is continuous and Y is compact,
g(Y ) is compact. Since g is injective, f(x) = g−1(h(x)), and g−1 : g(Y ) → Y is
continuous by Theorem 4.17. But g(Y ) is compact, so by Theorem 4.19, g−1 is uniformly
continuous. Applying Theorem 44 proves that f is uniformly continuous.

Suppose that h is continuous. Again, f = g−1 ◦ h, and g−1 is continuous by Theorem
4.17. Applying Theorem 4.7 proves that f is continuous. �

Chapter 5. Differentiation

Lemma 59. Let I be an interval and let f : I → R be a function differentiable at x.
Then there exists a function φ : I → R such that

f(t)− f(x) = (t− x)[f ′(x) + φ(t)]

for all t ∈ I and

lim
t→x

φ(t) = φ(0) = 0.

Proof. Define

φ(t) =

{
0 if t = x,
f(t)−f(x)

t−x − f ′(x) otherwise.

This function clearly satisfies the desired properties. �

Theorem 60. Let I1, I2 be intervals. Let f : I1 → R be a continuous function and
let g : I2 → R be a function where I2 contains the range of f . Define h : I1 → R by
h(x) = g(f(x)). If f is differentiable at some point x ∈ I1 and g is differentiable at
f(x), then h′(x) = g′(f(x))f ′(x).
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Proof. Let y = f(x) for convenience. By Lemma 59, there exist functions φ1, φ2 with

lim
t→x

φ1(t) = lim
s→y

φ2(s) = 0

such that

f(t)− f(x) = (t− x)[f ′(x) + φ1(t)],

g(s)− g(y) = (s− y)[g′(y) + φ2(s)],

whenever t ∈ I1 and s ∈ I2. In particular, by setting s = f(t) we have for all t ∈ I1,
h(t)− h(x) = g(f(t))− g(f(x))

= (f(t)− f(x))[g′(f(x)) + φ2(f(t))]

= (t− x)[f ′(x) + φ1(t)][g
′(f(x)) + φ2(f(t))],

so that

(*)
h(t)− h(x)

t− x
= [f ′(x) + φ1(t)][g

′(f(x)) + φ2(f(t))]

if t 6= x. By Theorem 40,

lim
t→x

φ2(f(t)) = φ2(f(x)) = 0

since f is continuous at x and φ2 is continuous at f(x), so taking t→ x in (*) completes
the proof. �

Theorem 61. [Exercise 5.1] Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Then f is constant.

Proof. The condition on f is that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x− y|
for all x, y ∈ R. Then f ′(x) = 0 for all x, and by the mean value theorem, f is
constant. �

Theorem 62. [Exercise 5.2] Let f : (a, b)→ R with f ′(x) > 0 for all x ∈ (a, b). Then:

(1) f is strictly increasing in (a, b), and
(2) If g is the inverse function of f , then g is differentiable and

g′(f(x)) =
1

f ′(x)

for all x ∈ (a, b).
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Proof. Let x, y ∈ (a, b) with x < y. By the mean value theorem, there exists a c ∈ (x, y)
such that f(y)− f(x) = (y − x)f ′(c) > 0, and therefore f(x) < f(y). This shows that
f is strictly increasing in (a, b). Let x ∈ (a, b); we want to show that g is differentiable
at f(x). Since f is differentiable at x, we have

lim
t→x

f(t)− f(x)

t− x
= f ′(x).

By Theorem 4.4, since f ′(x) > 0,

lim
t→x

t− x
f(t)− f(x)

=
1

f ′(x)
.

By Theorem 41 applied with g, we have

lim
t→f(x)

g(t)− g(f(x))

t− f(x)
=

1

f ′(x)

and therefore g′(f(x)) = 1/f ′(x). �

Theorem 63. [Exercise 5.3] Let g : R → R with a bounded derivative |g′| ≤ M . Fix
ε > 0 and let f(x) = x+ εg(x). Then f is injective if ε is small enough.

Proof. Take ε < 1/M . Let x, y ∈ R such that f(x) = f(y), i.e. x + εg(x) = y + εg(y),
so that ∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ =
1

ε
.

Suppose that x 6= y; then by the mean value theorem, there exists a z ∈ (x, y) such
that

|g′(z)| =
∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ =
1

ε
≤M.

This is a contradiction since 1/ε > M , so x = y whenever f(x) = f(y). �

Theorem 64. [Exercise 5.4] If C0, . . . , Cn are real constants such that

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn
n+ 1

= 0,

then the equation

C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0

has at least one real root between 0 and 1.

Proof. Let

f(x) = C0x+
C1

2
x+ · · ·+ Cn−1

n
xn +

Cn
n+ 1

xn+1
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so that f(0) = f(1) = 0. By the mean value theorem, there exists a x ∈ (0, 1) such
that

f ′(x) = C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0.

�

Theorem 65. [Exercise 5.5] Let f be defined and differentiable for every x > 0, with
f ′(x)→ 0 as x→ +∞. Let g(x) = f(x+ 1)− f(x). Then g(x)→ 0 as x→ +∞.

Proof. For every ε > 0, there exists a M > 0 such that |f ′(x)| < ε whenever x > M .
Then for all x > M , applying the mean value theorem to f gives a c ∈ (x, x + 1) such
that f(x + 1) − f(x) = f ′(c). Since c > M , we have |f(x+ 1)− f(x)| = |f ′(c)| < ε,
which proves that g(x)→ 0 as x→ +∞. �

Theorem 66. [Exercise 5.6] Let f be a real function. Suppose that

(1) f is continuous for x ≥ 0,
(2) f ′(x) exists for x > 0,
(3) f(0) = 0,
(4) f ′ is monotonically increasing.

Let

g(x) =
f(x)

x

be defined for all x > 0. Then g is monotonically increasing.

Proof. The derivative of g is given by

g′(x) =
xf ′(x)− f(x)

x2
,

so we want to prove that xf ′(x) − f(x) > 0 for all x > 0. For all x > 0, by the mean
value theorem, there exists a c ∈ (0, x) such that

f(x)

x
= f ′(c) < f ′(x)

since c < x and f ′ is monotonically increasing. This proves the result. �

Theorem 67. [Exercise 5.7] Suppose that f ′(x) and g′(x) exist, g′(x) 6= 0, and f(x) =
g(x) = 0. Then

lim
t→x

f(t)

g(t)
=
f ′(x)

g′(x)
.
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Proof. Since f ′(x) and g′(x) exist, we have

lim
t→x

f(t)− f(x)

t− x
= lim

t→x

f(t)

t− x
= f ′(x),

lim
t→x

g(t)− g(x)

t− x
= lim

t→x

g(t)

t− x
= g′(x).

Since g′(x) 6= 0, by Theorem 4.4 the result follows. �

Theorem 68. [Exercise 5.8] Suppose that f ′ is continuous on [a, b] and ε > 0. Then
there exists a δ > 0 such that ∣∣∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣∣∣ < ε

whenever 0 < |t− x| < δ and t, x ∈ [a, b].

Proof. By Theorem 4.19, f ′ is uniformly continuous since [a, b] is compact. There exists
a δ > 0 such that |f ′(t)− f ′(x)| < ε whenever |t− x| < δ. Then for all t, x ∈ [a, b] with
0 < |t− x| < δ, by the mean value theorem, there exists a u ∈ (t, x) such that∣∣∣∣f(t)− f(x)

t− x
− f ′(u)

∣∣∣∣ = 0,

and ∣∣∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣∣∣ ≤ ∣∣∣∣f(t)− f(x)

t− x
− f ′(u)

∣∣∣∣+ |f ′(u)− f ′(c)|

< ε.

�

Theorem 69. [Exercise 5.9] Let f : R → R be a continuous function such that f ′(x)
exists for all x 6= 0 and f ′(x)→ 3 as x→ 0. Then f ′(0) exists.

Proof. For every ε > 0 there exists a δ > 0 such that |f ′(x)− 3| < ε whenever 0 <
|x| < δ. For all x with 0 < |x| < δ, by the mean value theorem, there exists a c ∈ (0, x)
such that

f(x)− f(0)

x
= f ′(c)∣∣∣∣f(x)− f(0)

x
− 3

∣∣∣∣ = |f ′(c)− 3| < ε.

�
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Theorem 70. [Exercise 5.11] Suppose that f is defined in a neighborhood of x, and
suppose that f ′′(x) exists. Then

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

Proof. Since f ′′(x) exists, we have

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h

= lim
h→0

f ′(x)− f ′(x− h)

h

where the second limit is obtained by applying Theorem 41 with the bijection h 7→ −h.
Adding the two limits gives

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x− h)

2h
.

As h→ 0 we have f(x+ h) + f(x− h)− 2f(x)→ 0 and h2 → 0, so by Theorem 5.13,

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= lim

h→0

f ′(x+ h)− f ′(x− h)

2h
= f ′′(x).

�

Theorem 71. [Exercise 5.14] Let f : (a, b) → R be a differentiable function. Then f
is convex if and only if f ′ is monotonically increasing. If f ′′(x) exists for all x ∈ (a, b),
then f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

Proof. Suppose that f is convex. Let x, y ∈ (a, b) with x < y. Since f is convex, every
t ∈ (x, y) has

f(t)− f(x)

t− x
≤ f(y)− f(x)

y − x
≤ f(y)− f(t)

y − t
.

Then

lim
t→x+

f(t)− f(x)

t− x
≤ f(y)− f(x)

y − x
f(y)− f(x)

y − x
≤ lim

t→y−

f(y)− f(t)

y − t
,

and since f ′(x), f ′(y) both exist, f ′(x) ≤ f ′(y). Conversely, suppose that f ′ is monoton-
ically increasing. Let x, y ∈ (a, b) with x < y and let λ ∈ (0, 1). Let t = (1− λ)x+ λy.
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By the mean value theorem,

f(t)− f(x)

t− x
= f ′(t1)

f(y)− f(t)

y − t
= f ′(t2)

for some t1 ∈ (x, t) and t2 ∈ (t, y). Since t1 < t2,

f(t)− f(x)

t− x
≤ f(y)− f(t)

y − t
(1− λ)(y − x)(f(t)− f(x)) ≤ λ(y − x)(f(y)− f(t))

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y),

which shows that f is convex. If f ′′ is defined on (a, b), then f ′ is monotonically
increasing if and only if f ′′(x) ≥ 0 for all x ∈ (a, b). �

Theorem 72. [Exercise 5.15] Let a ∈ R and suppose that f : (a,∞) → R is twice-
differentiable. Suppose that M0, M1, M2 are the least upper bounds of |f(x)|, |f ′(x)|,
|f ′′(x)| respectively on (a,∞). Then M2

1 ≤ 4M0M2.

Proof. Let x ∈ (a,∞). For any h > 0, by Theorem 5.15, there exists a point ξ ∈
(x, x+ 2h) such that

f(x+ 2h) = f(x) + 2hf ′(x) + 2h2f ′′(ξ)

f ′(x) =
1

2h
[f(x+ 2h)− f(x)]− hf ′′(ξ).

Then

|f ′(x)| ≤
∣∣∣∣ 1

2h
[f(x+ 2h)− f(x)]− hf ′′(ξ)

∣∣∣∣
≤ |f(x+ 2h)|+ |f(x)|

2h
+ h |f ′′(ξ)|

≤ hM2 +
M0

h

so that M1 ≤ hM2 + M0/h since M1 is the least upper bound of |f ′(x)|. Setting
h = M1/(2M2) gives M2

1 ≤ 4M0M2. �

Theorem 73. [Exercise 5.16] Suppose that f : (0,∞) → R is twice-differentiable, f ′′

is bounded on (0,∞), and f(x)→ 0 as x→∞. Then f ′(x)→ 0 as x→∞.

Proof. Choose M such that |f ′′(x)| ≤ M for all x ∈ (0,∞). Let ε > 0 be given. There
exists a A such that |f(x)| < ε2/(16M) for all x ∈ (A,∞), and by Theorem 72 we have
|f ′(x)| ≤ ε/2 < ε for all x ∈ (A,∞). This shows that f ′(x)→ 0 as x→∞. �
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Theorem 74. [Exercise 5.17] Suppose that f : [−1, 1] → R is a three times differen-
tiable function such that

f(−1) = 0, f(0) = 0, f(1) = 1, f ′(0) = 0.

Then f (3)(x) ≥ 3 for some x ∈ (−1, 1).

Proof. By Theorem 5.15, there exist points s ∈ (0, 1) and t ∈ (−1, 0) such that

f(1) = f(0) + f ′(0) +
f ′′(0)

2
+
f (3)(s)

6

1 =
f ′′(0)

2
+
f (3)(s)

6
,(*)

f(−1) = f(0)− f ′(0) +
f ′′(0)

2
− f (3)(t)

6

0 =
f ′′(0)

2
− f (3)(t)

6
.(**)

Subtracting (**) from (*) gives f (3)(s) + f (3)(t) = 6. If f (3)(s) ≥ 3 then we are done;
otherwise, f (3)(s) = 6− f (3)(t) < 3, so f (3)(t) > 3. �

Theorem 75. [Exercise 5.18] Let n be a positive integer. Suppose that for f : [a, b]→
R, the value f (n−1)(t) exists for every t ∈ [a, b]. Let α, β, and P be as in Theorem 5.15.
Define Q(t) = (f(t)− f(β)) / (t− β) for all t ∈ [a, b] and t 6= β. Then

f(β) = P (β) +
Q(n−1)(α)

(n− 1)!
(β − α)n.

Proof. We want to prove that

Q(n−1)(t)

(n− 1)!
(β − t)n = f(β)−

n−1∑
k=0

f (k)(t)

k!
(β − t)k

for all n ≥ 1. The case n = 1 is equivalent to the definition of Q. Assuming the
statement for n and differentiating the above expression, we have

Q(n)(t)

(n− 1)!
(β − t)n − Q(n−1)(t)

(n− 1)!
n(β − t)n−1 = − f (n)(t)

(n− 1)!
(β − t)n−1

Q(n)(t)

(n− 1)!
(β − t)n+1 =

Q(n−1)(t)

(n− 1)!
n(β − t)n − f (n)(t)

(n− 1)!
(β − t)n,
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where in the first line, most of the terms on the right vanish. Applying the induction
hypothesis gives

Q(n)(t)

(n− 1)!
(β − t)n+1 = nf(β)− n

n−1∑
k=0

f (k)(t)

k!
(β − t)k − f (n)(t)

(n− 1)!
(β − t)n

Q(n)(t)

n!
(β − t)n+1 = f(β)−

n∑
k=0

f (k)(t)

k!
(β − t)k,

which proves the statement for all n. Setting t = α produces the desired result. �

Theorem 76. [Exercise 5.22(a)] Let f : R → R be a differentiable function with
f ′(t) 6= 1 for all t ∈ R. Then f has at most one fixed point.

Proof. Suppose that f has two fixed points, x = f(x) and y = f(y), with x 6= y. By
the mean value theorem, there exists a c ∈ (x, y) such that

f(y)− f(x)

y − x
= 1 = f ′(c),

which is a contradiction. �

Theorem 77. [Exercise 5.22(b)] Let f : R→ R be given by f(t) = t+ (1 + et)−1. Then
f has no fixed point, but f ′(t) ∈ (0, 1) for all t ∈ R.

Proof. To show that f has no fixed point, note that (1 + et)−1 6= 0 for all t ∈ R, so that
f(t) = t+ (1 + et)−1 6= t for all t ∈ R. Also,

f ′(t) = 1− et

(1 + et)2

= 1− 1

1 + et
+

1

(1 + et)2
.

From the first line, f ′(t) < 1 for all t ∈ R, and from the second line, f ′(t) > 0 for all
t ∈ R. �

Theorem 78. [Exercise 5.22(c)] Let f : R → R be a differentiable function. If there
exists a constant A < 1 such that |f ′(t)| ≤ A for all t ∈ R, then f has a fixed point
x = limn→∞ xn where x0 ∈ R is arbitrary and xn+1 = f(xn) for n ≥ 0.

Proof. The case A = 0 is trivial, so we may assume that A > 0. By the mean value
theorem, |f(x)− f(y)| ≤ A |x− y| for all x, y ∈ R. In particular, |xi+1 − xj+1| ≤
A |xi − xj| for all i, j ≥ 0, and |xm − xm−1| ≤ Am−1 |x1 − x0| for all m ≥ 1. We now
prove that for all n ≥ 1,

|xm+n − xm| ≤
A(1− An)

1− A
|xm − xm−1| .
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The case n = 1 is clear. Assuming the statement for n− 1, we have

|xm+n − xm| ≤ |xm+n−1 − xm|+ |xm+n − xm+n−1|

≤ A(1− An−1)
1− A

|xm − xm−1|+ An |xm − xm−1|

=
A(1− An)

1− A
|xm − xm−1| ,

which proves the statement for all n ≥ 1. Furthermore,

|xm+n − xm| <
A

1− A
|xm − xm−1|

for all n ≥ 1. Let ε > 0 be given. Recall that |xm − xm−1| ≤ Am−1 |x1 − x0| for all
m ≥ 1 and that A < 1; there exists a N such that |xk − xk−1| ≤ ε(1 − A)/A for all
k ≥ N . Let m,n ≥ N and assume without loss of generality that m < n. Then

|xn − xm| =
∣∣xm+(n−m) − xm

∣∣
<

A

1− A
|xm − xm−1|

< ε,

which shows that {xn} is a Cauchy sequence. By Theorem 3.11, {xn} converges to
some value x; we want to show that x is indeed a fixed point of f . Fix ε > 0. We know
that xn → x, {xn} is a Cauchy sequence, and f(xn) → f(x) because f is continuous.
Then there exists some integer n such that

|x− f(x)| ≤ |x− xn|+ |xn − f(xn)|+ |f(xn)− f(x)|
= |x− xn|+ |xn − xn+1|+ |f(xn)− f(x)|
< 3ε.

Since ε was arbitrary, x = f(x). �

Theorem 79. [Exercise 5.23] The function f(x) = (x3 + 1)/3 has three fixed points
α, β, γ, where −2 < α < −1, 0 < β < 1, and 1 < γ < 2. For an arbitrarily chosen x1,
define {xn} by setting xn+1 = f(xn).

(1) If x1 < α, then xn → −∞ as n→∞.
(2) If α < x1 < γ, then xn → β as n→∞.
(3) If γ < x1, then xn → +∞ as n→∞.
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Proof. Let g(x) = x3 − 3x + 1; since α, β, γ are fixed points of f , they are roots of g.
Suppose that x1 < α. For any c > 0, we can compute

g(α− c) = (α3 − 3α + 1)− 3α2c+ 3αc2 − c3 + 3c

= c(3(1− α2) + 3αc− c2)
< 3αc2 − c3

< −c3

f(α− c) < (α− c)− c3

3
.(*)

Let d = α − x1 > 0; (*) shows that xn+1 < xn − d/3 for every n ≥ 1, and clearly
xn → −∞ as n → ∞. Now suppose that α < x1 < γ. A simple induction argument
shows that α < xn < γ for all n ≥ 1, and by a variation on Theorem 78, xn → β since
f ′(x) = x2 ∈ [0,max(α, γ)] for all x ∈ [α, γ]. Finally, the case for γ < x1 is similar to
the case x1 < α. �

Proposition 80. [Exercise 5.25] Let f : [a, b] → R be a twice differentiable function
with f(a) < 0, f(b) > 0, f ′(x) ≥ δ > 0, and 0 < f ′′(x) ≤ M for all x ∈ [a, b]. Let ξ be
the unique point in (a, b) at which f(ξ) = 0. [Note: the inequality 0 ≤ f ′′(x) has been
changed to 0 < f ′′(x).]

Choose x1 ∈ (ξ, b) and define {xn} by

xn+1 = xn −
f(xn)

f ′(xn)
.

We now prove by induction that xn+1 ∈ (ξ, xn) for all n. For all n, applying the mean
value theorem gives a value c ∈ (ξ, xn) such that

f(xn)− f(ξ)

xn − ξ
= f ′(c) < f ′(xn),

since c < xn and f ′ is strictly increasing. Therefore

f(xn)

f ′(xn)
= xn − xn+1 < xn − ξ

and ξ < xn+1. Also, f(xn) > 0 for otherwise f(y) = 0 for some y ∈ [xn, b) by the
intermediate value theorem. Therefore f(xn)/f ′(xn) > 0 and xn+1 < xn.
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Applying Taylor’s theorem with α = xn, β = ξ gives a point tn ∈ (ξ, xn) such that

f(ξ) = f(xn) + f ′(xn)(ξ − xn) +
1

2
f ′′(tn)(ξ − xn)2

xn −
f(xn)

f ′(xn)
= ξ +

f ′′(tn)

2f ′(xn)
(xn − ξ)2

xn+1 − ξ =
f ′′(tn)

2f ′(xn)
(xn − ξ)2.

Consider the statement

xn+1 − ξ ≤
1

A
[A(x1 − ξ)]2

n

.

If n = 1, then

x2 − ξ =
f ′′(tn)

2f ′(x1)
(x1 − ξ)2

≤ M

2f ′(x1)
(x1 − ξ)2

< A(x1 − ξ)2.

Otherwise, assuming the statement for n− 1, we have

xn+1 − ξ =
f ′′(tn)

2f ′(xn)
(xn − ξ)2

< A(xn − ξ)2

<
1

A
[A(x1 − ξ)]2

n+1

,

which proves the statement for all n. Since 0 < xn+1 − ξ for all n, this shows that
xn → ξ as n → ∞. Let g(x) = x − f(x)/f ′(x). Since ξ is a root of f , g(ξ) = ξ, and
xn → ξ, the process amounts to finding a fixed point of g. For x near ξ,

g′(x) = 1− f ′(x)2 − f ′′(x)f(x)

f ′(x)2

=
f(x)f ′′(x)

f ′(x)2

≈ 0.

Theorem 81. [Exercise 5.26] Suppose that f : [a, b] → R is a differentiable function
with f(a) = 0. Let A be a real number such that |f ′(x)| ≤ A |f(x)| for all x ∈ [a, b].
Then f = 0.
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Proof. Let x0 ∈ [a, b], M0 = supa≤x≤x0 |f(x)|, and M1 = supa≤x≤x0 |f
′(x)|. By the mean

value theorem, there exists a point c ∈ (a, x0) such that

f(x0)

x0 − a
= f ′(c)

|f(x0)| ≤M1(x0 − a) ≤ A(x0 − a)M0.

Suppose that x0 > a and let x ∈ (a, x0). By the mean value theorem, there exists a
point c ∈ (a, x) such that

f(x)

x− a
= f ′(c)

|f(x)| ≤M1(x− a)

≤M1(x0 − a) ≤ A(x0 − a)M0.

Since f(a) = 0, we have |f(x)| ≤M1(x0 − a) ≤ A(x0 − a)M0 for all x ∈ [a, b]. Suppose
that A(x0 − a) < 1; then M0 = 0 for otherwise A(x0 − a)M0 < M0 is a lower bound of
|f(x)| in [a, x0], which contradicts the definition of M0. Therefore, if x0 > a is small
enough, then f(x) = 0 for all x ∈ [a, x0]. Now divide the interval [a, b] into n closed
intervals [a, p1], [p1, p2], . . . , [pn, b] where n is the smallest integer with n(x0−a) ≥ b−a,
and pk = a+k(x0−a). We have shown that f is zero on [a, x0] = [a, p1]; since f(p1) = 0,
applying the argument on [p1, p2] shows that f is zero on [p1, p2], and so on. �

Theorem 82. [Exercise 5.27] Let R be a rectangle in the plane given by a ≤ x ≤ b and
α ≤ y ≤ β for (x, y) ∈ R. Let φ : R → R be a function defined on the rectangle. A
solution of the initial-value problem

y′ = φ(x, y), y(a) = c where α ≤ c ≤ β

is by definition a differentiable function f : [a, b] → [α, β] such that f(a) = c and
f ′(x) = φ(x, f(x)) for all x ∈ [a, b]. Suppose that there is a constant A such that

|φ(x, y2)− φ(x, y1)| ≤ A |y2 − y1|
whenever (x, y1) ∈ R and (x, y2) ∈ R. Then the problem has at most one solution.

Proof. Let f, g be two solutions of the initial-value problem, and let h : [a, b] → R be
given by h(x) = f(x)− g(x). Then

|h′(x)| = |f ′(x)− g′(x)|
= |φ(x, f(x))− φ(x, g(x))|
≤ A |f(x)− g(x)|
= A |h(x)|

for all x ∈ [a, b]. Since h(a) = 0, by Theorem 81, h = 0 and f = g. �
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Chapter 6. The Riemann-Stieltjes Integral

Theorem 83. [Exercise 6.1] Suppose α : [a, b] → R is increasing, a ≤ x0 ≤ b, α is

continuous at x0, f(x0) = 1, ad f(x) = 0 if x 6= x0. Then f ∈ R(α) and
´ b
a
f dα = 0.

Proof. By Theorem 6.10, f ∈ R(α) since f has only one point of discontinuity. Also,

since L(P, f, α) = 0 for all partitions P ,
´ b
a
f dα = 0. �

Theorem 84. [Exercise 6.2] Suppose f : [a, b] → R is a continuous function, f ≥ 0,

and
´ b
a
f(x) dx = 0. Then f = 0.

Proof. Suppose that f 6= 0; we can choose x0 ∈ (a, b) such that f(x0) > 0, for f cannot
be nonzero only at its endpoints due to continuity. Then there exists a δ > 0 such that
|f(x0)− f(x)| < f(x0)/2 whenever |x0 − x| < δ. In particular, f(x) > f(x0)/2 for all
x ∈ [x0 − γ, x0 + γ], where γ = min {δ/2, x0 − a, b− x0}. By Theorem 6.12,

ˆ b

a

f(x) dx =

ˆ x0−γ

a

f(x) dx+

ˆ x0+γ

x0−γ
f(x) dx+

ˆ b

x0+γ

f(x) dx

≥
ˆ x0+γ

x0−γ
f(x) dx

≥
ˆ x0+γ

x0−γ
f(x0)/2 dx

> 0,

which is a contradiction. Therefore f = 0. �

Theorem 85. [Exercise 6.3] Define three functions β1, β2, β3 as follows: βj(x) = 0 if
x < 0, βj(x) = 1 if x > 0 for j = 1, 2, 3; and β1(0) = 0, β2(0) = 1, β2(0) = 1

2
. Let f be

a bounded function on [−1, 1].

(1) f ∈ R(β1) if and only if f(0+) = f(0), and then
´ 1
−1 f(x) dβ1 = f(0).

(2) f ∈ R(β2) if and only if f(0−) = f(0), and then
´ 1
−1 f(x) dβ2 = f(0).

(3) f ∈ R(β3) if and only if f is continuous at 0.
(4) If f is continuous at 0 then

ˆ 1

−1
f(x) dβ1 =

ˆ 1

−1
f(x) dβ2 =

ˆ 1

−1
f(x) dβ3 = f(0).
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Proof. Let ε > 0 be given. There exists a δ > 0 such that |f(x)− f(0)| < ε/2 whenever
0 < x < δ. Let γ = min(1, δ)/2 and let P = {−1, 0, γ, 1} be a partition of [−1, 1]. Then

U(P, f, β1)− L(P, f, β1) = sup
x∈[0,γ]

f(x)− inf
x∈[0,γ]

f(x)

< ε,

so f ∈ R(β1). Furthermore,

U(P, f, β1) = sup
x∈[0,γ]

f(x)

≤ f(0) +
ε

2
,

which shows that
´ 1
−1 f(x) dβ1 = f(0) since ε was arbitrary. Conversely, suppose that

f ∈ R(β1). Let ε > 0 be given. There exists a partition P of [−1, 1] such that

U(P, f, β1)− L(P, f, β1) = Mi −mi

< ε

for some i with xi−1 ≤ 0 < xi, where Mi = supx∈[xi−1,xi]
f(x) and mi = infx∈[xi−1,xi] f(x).

Then whenever 0 < t < xi we have 0 ≤ f(t) − mi < ε and −ε < mi − f(0) ≤ 0 so
that |f(t)− f(0)| < ε. This shows that f(0+) = f(0). The proof is similar for (2) and
(3). �

Theorem 86. [Exercise 6.4] If f(x) = 0 for all irrational x and f(x) = 1 for all
rational x, then f /∈ R on [a, b] for any a < b.

Proof. Let P = {x0, . . . , xn} be a partition of [a, b]. For all x < y there exist both
rational and irrational numbers in (x, y), so Mi = 1 and mi = 0 for every i. Therefore

U(P, f)− L(P, f) =
n∑
i=1

4xi

= b− a,

and f /∈ R on [a, b]. �

Remark 87. [Exercise 6.5] Suppose f is a bounded real function on [a, b], and f 2 ∈ R
on [a, b]. Does it follow that f ∈ R? Does the answer change if we assume that f 3 ∈ R?

Assume that a < b and let f(x) = 1 if x ∈ Q, f(x) = −1 if x /∈ Q. Then f 2 ∈ R
with

´ b
a
f(x)2 dx = b − a, but f /∈ R. This disproves the first part of the statement.

However, the second statement is true by Theorem 6.11, since x 7→ x1/3 is continuous
on any interval in R.
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Theorem 88. [Exercise 6.7] Let f : (0, 1] → R and suppose that f ∈ R on [c, 1] for
every c > 0. Define ˆ 1

0

f(x) dx = lim
c→0

ˆ 1

c

f(x) dx

if this limit exists (and is finite).

(1) If f ∈ R on [0, 1], then this definition of the integral agrees with the old one.
(2) There exists a function f such that the above limit exists, although it fails to

exist with |f | in place of f .

Proof. If f ∈ R on [0, 1], then by Theorem 6.20, F (c) =
´ 1

c
f(x) dx is continuous on

[0, 1]. Therefore limc→0 F (c) =
´ 1
0
f(x) dx. �

Theorem 89. [Exercise 6.8] Suppose that f ∈ R on [a, b] for every b > a where a is
fixed. Define ˆ ∞

a

f(x) dx = lim
b→∞

ˆ b

a

f(x) dx

if this limit exists (and is finite). Assume that f(x) ≥ 0 and that f decreases monoton-
ically on [1,∞). Then

´∞
1
f(x) dx converges if and only if

∑∞
n=1 f(n) converges.

Proof. Suppose that
´∞
1
f(x) dx converges to L. For every ε > 0, there exists a M ≥ 1

such that
∣∣∣´ b1 f(x) dx− L

∣∣∣ < ε/2 whenever b ≥ M . Then for all n ≥ m ≥ M + 1, we

have ˆ n

m−1
f(x) dx ≤

ˆ n

1

f(x) dx− L+ L−
ˆ m−1

1

f(x) dx

< ε.

But since f decreases monotonically on [1,∞),

0 ≤
n∑

k=m

f(k) ≤
n∑

k=m

ˆ k

k−1
f(x) dx

=

ˆ n

m−1
f(x) dx

< ε,

which shows that
∑∞

n=1 f(n) converges. Conversely, suppose that
∑∞

n=1 f(n) converges;

we first show that the sequence
{´ i

1
f(x) dx

}
converges. Let ε > 0. There exists a
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M ≥ 1 such that for all n ≥ m ≥ M we have 0 ≤
∑n

k=m f(k) < ε. Then for all
m,n ≥M , assume m ≤ n so that

0 ≤
ˆ n

1

f(x) dx−
ˆ m

1

f(x) dx =

ˆ n

m

f(x) dx

=
n−1∑
k=m

ˆ k+1

k

f(x) dx

≤
n−1∑
k=m

f(k)

< ε.

This shows that
´ i
1
f(x) dx → L for some L ≥ 0, and furthermore,

´ i
1
f(x) dx ≤ L for

all i ≥ 1 since the sequence is monotonically increasing. Let ε > 0 be given; there exists

a N ≥ 1 such that 0 ≤ L−
´ i
1
f(x) dx < ε whenever i ≥ N . Now for all real b ≥ N + 1,
ˆ bbc
1

f(x) dx ≤
ˆ b

1

f(x) dx

0 ≤ L−
ˆ b

1

f(x) dx ≤ L−
ˆ bbc
1

f(x) dx

< ε.

This proves that
´∞
1
f(x) dx converges to L. �

Theorem 90. [Exercise 6.9] Suppose that F and G are differentiable on [a, b] for every
b > a, F ′ = f ∈ R and G′ = g ∈ R. If

lim
b→∞

F (b)G(b)

exists (with a finite value) and ˆ ∞
a

f(x)G(x) dx

converges, thenˆ ∞
a

F (x)g(x) dx = lim
b→∞

F (b)G(b)− F (a)G(a)−
ˆ ∞
a

f(x)G(x) dx.

Proof. For every b > a,ˆ b

a

F (x)g(x) dx = F (b)G(b)− F (a)G(a)−
ˆ b

a

f(x)G(x) dx.

The result follows from Theorem 4.4. �
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Theorem 91. [Exercise 6.10] Let p and q be positive real numbers such that

1

p
+

1

q
= 1.

(1) If u ≥ 0 and v ≥ 0, then

uv ≤ up

p
+
vq

q
,

with equality if up = vq.
(2) If f ∈ R(α), g ∈ R(α), f ≥ 0, g ≥ 0, andˆ b

a

fp dα = 1 =

ˆ b

a

gq dα,

then ˆ b

a

fg dα ≤ 1.

(3) If f and g are complex functions in R(α), then∣∣∣∣ˆ b

a

fg dα

∣∣∣∣ ≤ {ˆ b

a

|f |p dα
}1/p{ˆ b

a

|g|q dα
}1/q

.

Proof. We have

uv = (up)1/p(vq)1/q

= exp

(
1

p
log up

)
exp

(
1

q
log vq

)
= exp

(
1

p
log up +

1

q
log vq

)
≤ 1

p
exp (log up) +

1

q
exp (log vq)

=
up

p
+
vq

q

since 1/q = 1− 1/p and exp is convex. If up = vq, then

uv = (up)1/p(vq)1/q

= (up)1/p+1/q

= up

=
up

p
+
vq

q
.
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This proves (1). Let f ∈ R(α), g ∈ R(α) with f ≥ 0, g ≥ 0 andˆ b

a

fp dα = 1 =

ˆ b

a

gq dα.

Then (on [a, b])

fg ≤ fp

p
+
gq

qˆ b

a

fg dα ≤ 1

p

ˆ b

a

fp dα +
1

q

ˆ b

a

gq dα

= 1,

which proves (2). Now suppose that f and g are functions in R(α). Let

A =

{ˆ b

a

|f |p dα
}1/p

,

B =

{ˆ b

a

|g|q dα
}1/q

so that ˆ b

a

(
|f |
A

)p
dα = 1 =

ˆ b

a

(
|g|
B

)q
dα

assuming that A,B > 0. Applying (2) givesˆ b

a

|f | |g|
AB

dα ≤ 1,

and then ∣∣∣∣ˆ b

a

fg dα

∣∣∣∣ ≤ ˆ b

a

|f | |g| dα

≤ AB

=

{ˆ b

a

|f |p dα
}1/p{ˆ b

a

|g|q dα
}1/q

,

which proves (3). �

Theorem 92. [Exercise 6.11] Let α be a fixed increasing function on [a, b]. For u ∈
R(α), define

‖u‖2 =

{ˆ b

a

|u|2 dα
}1/2

.

Suppose f, g, h ∈ R(α). Then

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2 .
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Proof. On [a, b] we have

(f − h)2 = (f − g + g − h)2

= (f − g)2 + 2(f − g)(g − h) + (g − h)2ˆ b

a

|f − h|2 dα =

ˆ b

a

|f − g|2 dα + 2

ˆ b

a

(f − g)(g − h) dα +

ˆ b

a

|g − h|2 dα

≤
ˆ b

a

|f − g|2 dα + 2

∣∣∣∣ˆ b

a

(f − g)(g − h) dα

∣∣∣∣+

ˆ b

a

|g − h|2 dα.

Applying Theorem 91 gives

‖f − h‖22 ≤ ‖f − g‖
2
2 + 2

{ˆ b

a

|f − g|2 dα
}1/2{ˆ b

a

|g − h|2 dα
}1/2

+ ‖g − h‖22

= ‖f − g‖22 + 2 ‖f − g‖2 ‖g − h‖2 + ‖g − h‖22
= (‖f − g‖2 + ‖g − h‖2)

2 ,

which completes the proof. �

Theorem 93. [Exercise 6.12] Suppose f ∈ R(α) and ε > 0. Then there exists a
continuous function g on [a, b] such that ‖f − g‖2 < ε.

Proof. Let M = sup f(x) and m = inf f(x) over x ∈ [a, b], and assume that M 6= m for
otherwise f is constant and the result follows by setting g = f . Let P = {x0, . . . , xn}
be a partition of [a, b] such that U(P, f, α)− L(P, f, α) < ε2/(M −m). Define

g(t) =
xi − t
4xi

f(xi−1) +
t− xi−1
4xi

f(xi)

for xi−1 ≤ t ≤ xi; g is continuous at each xi. For each i, let Mi = sup f(x) and
mi = inf f(x), over x ∈ [xi−1, xi]. We can rewrite g as

g(t) = f(xi−1) +
f(xi)− f(xi−1)

4xi
(t− xi−1),

which shows that

m ≤ mi ≤ g(x) ≤Mi ≤M
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for all x ∈ [a, b]. Then

‖f − g‖22 =

ˆ b

a

|f(x)− g(x)|2 dα

=
n∑
i=1

ˆ xi

xi−1

|f(x)− g(x)|2 dα

=
n∑
i=1

ˆ xi

xi−1

|Mi −mi|2 dα

=
n∑
i=1

|Mi −mi|24αi

≤ (M −m)
n∑
i=1

(Mi −mi)4αi

= (M −m)(U(P, f, α)− L(P, f, α))

< ε2,

which completes the proof. �

Theorem 94. [Exercise 6.13] Define

f(x) =

ˆ x+1

x

sin(t2) dt.

(1) |f(x)| < 1/x if x > 0.
(2) 2xf(x) = cos(x2)− cos[(x+ 1)2] + r(x) where |r(x)| < c/x and c is a constant.
(3) lim supx→∞ xf(x) = 1 and lim infx→∞ xf(x) = −1.
(4)
´∞
0

sin(t2) dt converges.

Proof. Let x > 0. By Theorem 6.8,

u 7→ sin(u)

2
√
u

is Riemann-integrable on [x2, (x + 1)2]. Let ϕ : [x, x + 1] → [x2, (x + 1)2] be given by
t 7→ t2. Since ϕ strictly increasing and onto, applying Theorem 6.19 gives

ˆ (x+1)2

x2

sinu

2
√
u
du =

ˆ x+1

x

sin(t2) dt = f(x).
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Let F (u) = − cosu and G(u) = 1/(2
√
u) so that F ′(u) = sinu and G′(u) = −1/(4u3/2).

By Theorem 6.22,

f(x) =
cos(x2)

2x
− cos[(x+ 1)2]

2(x+ 1)
−
ˆ (x+1)2

x2

cosu

4u3/2
du

≤ cos(x2)

2x
− cos[(x+ 1)2]

2(x+ 1)
+

ˆ (x+1)2

x2

1

4u3/2
du

=
cos(x2)

2x
− cos[(x+ 1)2]

2(x+ 1)
+

1

2x
− 1

2(x+ 1)

=
cos(x2) + 1

2x
− cos[(x+ 1)2] + 1

2(x+ 1)

≤ 1

x
− 1

x+ 1

<
1

x
,

and similarly replacing cosu with 1 gives −1/x < f(x). This proves (1). For (2),

(*) 2xf(x) = cos(x2)− cos[(x+ 1)2] + r(x)

where

r(x) =
1

x+ 1
cos[(x+ 1)2]− x

ˆ (x+1)2

x2

cosu

2u3/2
du.

Furthermore,

|r(x)| ≤ 1

x+ 1
+ x

ˆ (x+1)2

x2

1

2u3/2
du

=
1

x+ 1
+ x

(
1

x
− 1

x+ 1

)
=

2

1 + x

<
2

x

since 2x < 2 + 2x. Then equation (*) shows (3). The integral
´∞
0

sin(t2) dt converges

if
´∞
1

sin(t2) dt converges. As in (1) we have for all b > 1,
ˆ b

1

sin(t2) dt =

ˆ b2

1

sin(u)

2
√
u
du

and ˆ b2

1

sin(u)

2
√
u
du = −cos(b2)

2b
+

cos 1

2
−
ˆ b2

1

cosu

4u3/2
du.
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Since
´∞
1

1/(4u3/2) du converges, applying Theorem 90 shows that
´∞
0

sin(t2) dt con-
verges. �

Theorem 95. [Exercise 6.15] Suppose that f : [a, b]→ R is a continuously differentiable
function with f(a) = f(b) = 0, and

ˆ b

a

f(x)2 dx = 1.

Then ˆ b

a

xf(x)f ′(x) dx = −1

2

and (ˆ b

a

f ′(x)2 dx

)(ˆ b

a

x2f(x)2 dx

)
>

1

4
.

Proof. Let F (x) = f(x) and G(x) = xf(x) so that F ′(x) = f ′(x) and G′(x) = xf ′(x) +
f(x). By Theorem 6.22,

ˆ b

a

xf(x)f ′(x) dx = −
ˆ b

a

f(x)[xf ′(x) + f(x)] dx

= −
ˆ b

a

f(x)2 dx−
ˆ b

a

xf(x)f ′(x) dx

= −1

2
.

By Theorem 91 we have

1

4
=

∣∣∣∣ˆ b

a

[f ′(x)][xf(x)] dx

∣∣∣∣2 ≤ (ˆ b

a

|f ′(x)|2 dx
)(ˆ b

a

|xf(x)|2 dx
)
.

�

Theorem 96. [Exercise 6.16] For 1 < s <∞, define

ζ(s) =
∞∑
n=1

1

ns
.

(1) ζ(s) = s

ˆ ∞
1

bxc
xs+1

dx.

(2) ζ(s) =
s

s− 1
− s
ˆ ∞
1

x− bxc
xs+1

dx.
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Proof. For every positive integer N ,

s

ˆ N

1

bxc
xs+1

dx = s
N−1∑
n=1

ˆ n+1

n

bxc
xs+1

dx

= s

N−1∑
n=1

n

ˆ n+1

n

1

xs+1
dx

=
N−1∑
n=1

n

(
1

ns
− 1

(n+ 1)s

)

=
N−1∑
n=1

(
1

ns−1
− n+ 1

(n+ 1)s
+

1

(n+ 1)s

)

=
N−1∑
n=1

(
1

ns−1
− 1

(n+ 1)s−1

)
+

N∑
n=2

1

ns

= 1− 1

N s−1 +
N∑
n=2

1

ns

=
N∑
n=1

1

ns
− 1

N s−1

so that

s

ˆ ∞
1

bxc
xs+1

dx =
∞∑
n=1

1

ns

since s− 1 > 0. For (2), we have

s

s− 1
− s
ˆ N

1

x− bxc
xs+1

dx =
s

s− 1
− s
ˆ N

1

1

xs
dx+ s

ˆ N

1

bxc
xs+1

dx

=
N∑
n=1

1

ns
+

(
s

s− 1

)
1

N s−1 −
1

N s−1

and again,

s

s− 1
− s
ˆ ∞
1

x− bxc
xs+1

dx =
∞∑
n=1

1

ns
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if s > 1. In fact, the integral in (2) converges for all s > 0 sinceˆ N

1

x− bxc
xs+1

dx ≤
ˆ N

1

1

xs+1
dx

=
1

s

(
1− 1

N s

)
.

�

Lemma 97. Suppose that f ∈ R on [a, b] and let P be a partition of [a, b]. Let c be

a real number. If U(P ∗, f, α) ≥ c for every refinement P ∗ of P , then
´ b
a
f dα ≥ c. If

L(P ∗, f, α) ≤ c for every refinement P ∗ of P , then
´ b
a
f dα ≤ c.

Proof. Let ε > 0. There exists a partition P ′ of [a, b] such that

U(P ′, f, α) <

ˆ b

a

f dα + ε.

Let P ∗ = P ∪ P ′; since P ∗ is a refinement of P , we have

2 ≤ U(P ∗, f, α) ≤ U(P ′, f, α) <

ˆ b

a

f dα + ε,

which completes the proof since ε > 0 was arbitrary. The case for the lower sums is
analogous. �

Theorem 98. [Exercise 6.17] Suppose α increases monotonically on [a, b], g is contin-
uous, and g(x) = G′(x) for all x ∈ [a, b]. Thenˆ b

a

α(x)g(x) dx = G(b)α(b)−G(a)α(a)−
ˆ b

a

G(x) dα.

Proof. Let ε > 0 and let P = {x0, . . . , xn} be a partition of [a, b] such that U(P, g) −
L(P, g) < ε. Applying the mean value theorem gives points ti ∈ (xi−1, xi) such that
g(ti)4xi = G(xi)−G(xi−1). Then

n∑
i=1

α(xi)g(ti)4xi =
n∑
i=1

α(xi) [G(xi)−G(xi−1)]

=
n+1∑
i=2

α(xi−1)G(xi−1)−
n∑
i=1

α(xi)G(xi−1)

= G(b)α(b)−G(a)α(a)−
n∑
i=1

G(xi−1)4αi(*)
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and
n∑
i=1

|g(xi)− g(ti)|4xi < ε

by Theorem 6.7 so that∣∣∣∣∣
n∑
i=1

α(xi)g(xi)4xi −
n∑
i=1

α(xi)g(ti)4xi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

α(xi) [g(xi)− g(ti)]4xi

∣∣∣∣∣
≤

n∑
i=1

|α(xi) [g(xi)− g(ti)]|4xi

≤Mε

where M = supα(x) over x ∈ [a, b]. From (*) we have
n∑
i=1

α(xi)g(xi)4xi ≤ G(b)α(b)−G(a)α(a)−
n∑
i=1

G(xi−1)4αi +Mε

L(P, αg) + L(P,G, α) ≤ G(b)α(b)−G(a)α(a) +Mε

and similarly

G(b)α(b)−G(a)α(a)−Mε ≤ U(P, αg) + U(P,G, α).

But these two inequalities are true for any refinement of P , so by Theorem 97,

S −Mε ≤
ˆ b

a

α(x)g(x) dx =

ˆ b

a

α(x)g(x) dx ≤ S +Mε

where

S = G(b)α(b)−G(a)α(a)−
ˆ b

a

G(x) dα.

Since ε was arbitrary, the result follows. �

Theorem 99. [Exercise 6.18] Let γ1, γ2, γ3 be curves in the complex plane, defined on
[0, 2π] by

γ1(t) = eit, γ2(t) = e2it, γ3(t) = e2πit sin(1/t).

(1) γ1, γ2 are rectifiable. γ1 has length 2π and γ2 has length 4π.
(2) γ3 is not rectifiable.

Proof. Applying Theorem 6.27 shows that

Λ(γ1) =

ˆ 2π

0

∣∣ieit∣∣ dt
= 2π
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and

Λ(γ1) =

ˆ 2π

0

∣∣2ie2it∣∣ dt
= 4π.

Let P = {x2n+1, . . . , 2/π} with

xk =
2

(2k + 1)π

so that

Λ(P, γ3) =
2n+1∑
k=1

∣∣e2πixk sin(1/xk) − e2πixk−1 sin(1/xk−1)
∣∣ .

≥
n∑
k=1

∣∣e4i/(4k+1) − e−4i/(4k−1)
∣∣

=
n∑
k=1

√
2− 2 cos

(
4

4k + 1
+

4

4k − 1

)
→∞

as n→∞ since
√

2− 2 cosx = x+O(x3) and

∞∑
k=1

(
4

4k + 1
+

4

4k − 1

)
diverges. This shows that Λ(γ3) = +∞ and therefore γ3 is not rectifiable. �

Theorem 100. [Exercise 6.19] Let γ1 : [a, b]→ Rk be a curve and let φ : [c, d]→ [a, b]
be a continuous bijection such that φ(c) = a. Define γ2 = γ1 ◦ φ. Then:

(1) γ2 is an arc if and only if γ1 is an arc.
(2) γ2 is a closed curve if and only if γ1 is a closed curve.
(3) γ2 is rectifiable if and only if γ1 is rectifiable, and in that case γ1, γ2 have the

same length.

Proof. (1) is clear since the composition of injections is also an injection (φ, φ−1 are
both injective). (2) is clear since φ is monotonically increasing and φ(d) = b. For (3),
suppose that γ1 is rectifiable. Let P = {x0, . . . , xn} be a partition of [c, d]. Define P ′ =
{φ(x0), . . . , φ(xn)}; This is a well-defined partition of [a, b], for φ must be monotonically
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increasing. Then

Λ(P, γ2) =
n∑
i=1

|γ1(φ(xi))− γ1(φ(xi−1))|

= Λ(P ′, γ1)

≤ Λ(γ1).

Since this holds for all partitions, we have Λ(γ2) ≤ Λ(γ1) which shows that γ2 is
rectifiable. Noting that γ1 = γ2◦φ−1, the same argument proves that Λ(γ1) ≤ Λ(γ2). �

Chapter 7. Sequences and Series of Functions

Theorem 101. [Exercise 7.1] Every uniformly convergent sequence of bounded func-
tions is uniformly bounded.

Proof. Let fn → f uniformly on E, where each fn is bounded. That is, for each n,
Mn = supx∈E |fn(x)| is finite. Choose an integer N such that |fn(x)− f(x)| < 1 for all
n ≥ N and x ∈ E. In particular,

|f(x)| ≤ |fN(x)− f(x)|+ |fN(x)|
< MN + 1

for all x ∈ E, and

|fn(x)| ≤ |fn(x)− f(x)|+ |f(x)|
< MN + 2

for all n ≥ N . Take M = max {M1, . . . ,MN−1,MN + 2} so that |fn(x)| ≤ M for all
n ≥ 1. This completes the proof. �

Theorem 102. [Exercise 7.2] If {fn} and {gn} converge uniformly on a set E, then
{fn + gn} converges uniformly on E. Furthermore, if {fn} and {gn} are sequences of
bounded functions, then {fngn} converges uniformly on E.

Proof. Let fn → f and gn → g uniformly on E. For any ε > 0, there exist in-
tegers N1, N2 such that for all x ∈ E, |fn(x)− f(x)| < ε/2 whenever n ≥ N1 and
|gn(x)− g(x)| < ε/2 whenever n ≥ N2. Then |fn(x)− f(x) + gn(x)− g(x)| < ε when-
ever x ∈ E and n ≥ max(N1, N2), which shows that fn + gn → f + g uniformly
on E. Now suppose that {fn} , {gn} are sequences of bounded functions, so that
f, g are bounded. Let ε > 0 be given. Choose N1, N2 such that for all x ∈ E,
|fn(x)− f(x)| <

√
ε whenever n ≥ N1 and |gn(x)− g(x)| <

√
ε whenever n ≥ N2.

Then for all x ∈ E and n ≥ max(N1, N2),

|[fn(x)− f(x)][gn(x)− g(x)]| < ε,
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which shows that (fn − f)(gn − g) → 0 uniformly on E. Since f, g are bounded,
f(gn − g)→ 0 and g(fn − f)→ 0 uniformly on E, so that

fngn − fg = (fn − f)(gn − g) + f(gn − g) + g(fn − f)

→ 0

uniformly on E. �

Theorem 103. [Exercise 7.3] Let fn(x) = x and gn(x) = 1/n; fn → x and gn → 0
uniformly on R, but {fngn} does not converge uniformly.

Proof. Choose ε = 1 and let N be an integer. Then (fngn)(N) ≥ 1 = ε for all n ≥ N ,
which shows that {fngn} does not converge uniformly. �

Example 104. [Exercise 7.4] Consider

f(x) =
∞∑
n=1

1

1 + n2x
.

For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous wherever the series converges? Is f bounded?

• The series does not converge when x = 0, and is undefined when x = −1/n2 for
any integer n ≥ 1. However, it converges absolutely for all other x.
• The series converges uniformly on a set E if and only if 0,−1,−1/22,−1/32, . . .

are all interior points of Ec.
• f is continuous and bounded on any set where it converges uniformly.

Example 105. [Exercise 7.5] Let

fn(x) =


0 for x < 1

n+1
,

sin2 π
x

for 1
n+1
≤ x ≤ 1

n
,

0 for 1
n
< x.

For any x, there exists a N such that 1/n < x for all n ≥ N ; this shows that fn → 0.
Choose ε = 1; then for all N we have

fN(
(2N + 1)

2N(N + 1)
) = sin2(2N(N + 1)π/(2N + 1))

= 1,

which shows that {fn} does not converge uniformly. Now consider the series
∑
fn(x).

For any x there are only finitely many non-zero terms, so that the series converges
absolutely for all x. Again, the series fails to converge uniformly.
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Theorem 106. [Exercise 7.6] The series

(*)
∞∑
n=1

(−1)n
x2 + n

n2
=
∞∑
n=1

(−1)n
(
x2

n2
+

1

n

)
converges uniformly in every bounded interval, but does not converge absolutely for any
value of x.

Proof. Let I be a bounded interval and letM = supx∈I |x|. By Theorem 3.43,
∑

(−1)n/n
converges, and

∑
(−1)nx2/n2 converges (absolutely) for all x. Therefore (*) converges,

and it remains to show that the convergence is uniform. Let ε > 0 be given and choose
N1 such that ∣∣∣∣∣

n∑
k=m

(−1)n
1

n

∣∣∣∣∣ < ε/2

whenever n ≥ m ≥ N1. Also choose N2 such that

n∑
k=m

M2

n2
< ε/2

whenever n ≥ m ≥ N2. Then for all n ≥ m ≥ max(N1, N2) and all x ∈ I,∣∣∣∣∣
n∑

k=m

(−1)n
(
x2

n2
+

1

n

)∣∣∣∣∣ ≤
∣∣∣∣∣
n∑

k=m

(−1)n
1

n

∣∣∣∣∣+
n∑

k=m

x2

n2

≤

∣∣∣∣∣
n∑

k=m

(−1)n
1

n

∣∣∣∣∣+
n∑

k=m

M2

n2

< ε.

This shows that (*) converges absolutely by Theorem 7.8. That the series does not
converge absolutely is clear from the fact that

∑
1/n diverges. �

Theorem 107. [Exercise 7.7] Let fn : R→ R be defined for all positive integers n by

fn(x) =
x

1 + nx2
.

Then {fn} converges uniformly to a function f , and the equation

(*) f ′(x) = lim
n→∞

f ′n(x)

is correct if x 6= 0 but false if x = 0.
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Proof. Let ε > 0 be given and choose an integer N such that N > 1/ε2. Let n ≥ N
and x ∈ R. If |x| < ε then ∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ |x|
< ε.

Otherwise, ∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ ∣∣∣∣ 1

nx

∣∣∣∣
< ε.

This shows that fn → 0 uniformly on R. For each n we have

f ′n(x) =
1− nx2

(1 + nx2)2
.

If x 6= 0 then f ′n(x) → 0 as n → ∞ so that (*) is true, but f ′n(0) = 1 while f ′(0) = 0,
which contradicts (*). �

Theorem 108. [Exercise 7.8] If

I(x) =

{
0 for x ≤ 0,

1 otherwise,

if {xn} is a sequence of distinct points of (a, b), and if
∑
|cn| converges, then the series

f(x) =
∞∑
n=1

cnI(x− xn)

converges uniformly on [a, b]. Additionally, f is continuous for every x 6= xn.

Proof. Applying Theorem 7.10 shows that the series converges uniformly on [a, b] since

|cnI(x− xn)| ≤ |cn|

for each n and
∑
|cn| converges. If x 6= xn, then there exists a neighborhood N of x

such that N ∩ {xn} is empty. It is clear from the definition that f is constant on N ,
that is, f(t) = f(u) for all t, u ∈ N . This shows that f is continuous at x. �

Theorem 109. [Exercise 7.9] Let {fn} be a sequence of continuous functions which
converges uniformly to a function f on a set E. Then

lim
n→∞

fn(xn) = f(x)

for every sequence of points xn ∈ E such that xn → x and x ∈ E.
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Proof. Let ε > 0 be given. Choose an integerN1 such that |fn(t)− f(t)| < ε/2 whenever
t ∈ E and n ≥ N1. By Theorem 7.12, f is continuous on E, so that we may choose
a δ > 0 such that |f(t)− f(x)| < ε/2 whenever |t− x| < δ, and choose an integer N2

such that |xn − x| < δ whenever n ≥ N2. Then for all n ≥ max(N1, N2),

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)|
< ε.

�

Theorem 110. [Exercise 7.11] Let {fn} , {gn} be sequences in a set E. If

(1)
∑
fn has uniformly bounded partial sums,

(2) gn → 0 uniformly on E, and
(3) g1(x) ≥ g2(x) ≥ g3(x) ≥ · · · for every x ∈ E,

then
∑
fngn converges uniformly on E.

Proof. Note that gk(x) ≥ 0 for all x ∈ E and k ≥ 1, since each {gn(x)} is monotonic.
Let ε > 0 be given. Since

∑
fn has uniformly bounded partial sums, we can let

M = supx∈E |An(x)| where An(x) denotes the partial sums of
∑
fn(x). Choose an

integer N such that gN < ε/(2M). Then for all n ≥ m ≥ N and x ∈ E,∣∣∣∣∣
n∑

k=m

fn(x)gn(x)

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=m

Ak(x)[gk(x)− gk+1(x)] + An(x)gn(x)− Am−1(x)gm(x)

∣∣∣∣∣
≤

n−1∑
k=m

|Ak(x)| [gk(x)− gk+1(x)] + |An(x)gn(x)|+ |Am−1(x)gm(x)|

≤M

(
n−1∑
k=m

[gk(x)− gk+1(x)] + gn(x) + gm(x)

)
= 2Mgm(x)

< ε.

�

Theorem 111. Let {fn} be a sequence of functions that converge uniformly to f on
[a,∞), where limx→∞ fn(x) exists for each n. Let

An = lim
x→∞

fn(x);

then {An} converges, and

lim
x→∞

f(x) = lim
n→∞

An.



57

Proof. Let ε > 0 be given. Since {fn} converges uniformly to f , there exists an integer
N such that |fn(x)− fm(x)| < ε whenever every x ≥ a and m,n ≥ N . By Corollary 30,
|An − Am| < ε for all m,n ≥ N . This shows that {An} converges to some A. Choose
an integer N such that |f(x)− fN(x)| < ε/3 for all x ≥ a and |AN − A| < ε/3. Then
choose a M such that |fN(x)− AN | < ε/3 for all x ≥M , so that

|f(x)− A| ≤ |f(x)− fN(x)|+ |fN(x)− AN |+ |AN − A|
< ε

whenever x ≥ max(a,M). This completes the proof. �

Theorem 112. [Exercise 7.12] Let g, fn : (0,∞)→ R be functions Riemann-integrable
on [t, T ] whenever 0 < t < T < ∞. If |fn| ≤ g, fn → f uniformly on every compact
subset of [0,∞), and ˆ ∞

0

g(x) dx <∞,

then

lim
n→∞

ˆ ∞
0

fn(x) dx =

ˆ ∞
0

f(x) dx,

provided that all improper integrals exist.

Proof. Define Fn : [0,∞)→ R for each n and F : [0,∞)→ R by

Fn(b) =

ˆ b

0

fn(x) dx,

F (b) =

ˆ b

0

f(x) dx,

and let L =
´∞
0
g(x) dx for convenience. For every b,

lim
n→∞

Fn(b) = F (b)

by Theorem 7.16, so that Fn → F pointwise on [0,∞). We also want to show that
convergence is uniform. Let ε > 0 be given. Choose a M ≥ 0 such thatˆ ∞

M

g(x) dx = L−
ˆ M

0

g(x) dx

<
ε

4
,

and choose an integer N such that

|fn(x)− f(x)| < ε

2M
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whenever n ≥ N and 0 ≤ x ≤M . Then for all b ≥M and n ≥ N ,

|Fn(b)− F (b)| =
∣∣∣∣ˆ b

0

[fn(x)− f(x)] dx

∣∣∣∣
≤
ˆ b

0

|fn(x)− f(x)| dx

≤
ˆ M

0

|fn(x)− f(x)| dx+ 2

ˆ ∞
M

g(x) dx

< ε,

while |Fn(b)− F (b)| < ε/4 < ε trivially when b < M . The result then follows from
applying Theorem 111 on {Fn}. �

Theorem 113. [Exercise 7.13] Let {fn} be a sequence of monotonically increasing
functions on R with 0 ≤ fn(x) ≤ 1 for all x and all n.

(1) There is a function f and a sequence {nk} such that

f(x) = lim
k→∞

fnk
(x)

for every x ∈ R.
(2) If f is continuous, then fnk

→ f uniformly on compact sets.

Proof. By Theorem 7.23, there exists a subsequence of functions {fnk
} such that {fnk

(r)}
converges to some f(r) for all r ∈ Q. For all x ∈ R, define

f(x) = sup
r≤x,r∈Q

f(r).

Let x ∈ R \Q and suppose that f is continuous at x. Let L = limk→∞ fnk
(x); we want

to show that f(x) = L. For every rational r ≤ x we have fnk
(r) ≤ fnk

(x) and therefore
f(r) ≤ L by taking k → ∞. This shows that f(x) ≤ L. Suppose that f(x) < L, and
choose a ε > 0 with f(x) < f(x) + ε < L. Choose a δ > 0 such that |f(x)− f(t)| < ε
whenever |x− t| < δ. If r ∈ Q with x < r < x+ δ, then f(r) < L. But

L = lim
k→∞

fnk
(x) ≤ lim

k→∞
fnk

(r) = f(r) < L,

which is a contradiction. Therefore f(x) = L. If x < y then f(x) = limk→∞ fnk
(x) ≤

limk→∞ fnk
(y) = f(y); by Theorem 4.30, f has at most a countable number of discon-

tinuities {ti}. Applying Theorem 7.23 again to {ti} produces a subsequence
{
fnj

}
of

{fnk
} such that fnj

(ti) converges to some ui for every i. Redefining f(x) using the new

subsequence
{
fnj

}
proves (1).

For (2), let f be a continuous function and let {nk} be a sequence such that f(x) =
limk→∞ fnk

(x) for every x ∈ R. Let E ⊆ R be a compact set and let ε > 0 be given.
By Theorem 4.19, f is uniformly continuous on E, so there exists a δ > 0 such that
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|f(x)− f(y)| < ε/3 whenever |x− y| < δ. Let A = inf E and B = supE; construct a
set of points {x1, . . . , xn} where A = x1 ≤ · · · ≤ xn = B and xi+1 − xi < δ/2 for all
1 ≤ i ≤ n− 1. Then for each 1 ≤ i ≤ n− 1 we have

|f(xi+1)− f(xi)| =
∣∣∣ lim
k→∞

[fnk
(xi+1)− fnk

(xi)]
∣∣∣ < ε/3

and we may choose an integer Ni such that both |fnk
(xi+1)− fnk

(xi)| < ε/3 and
|fnk

(xi)− f(xi)| < ε/3 whenever k ≥ Ni; let N = max {Ni}. Let x ∈ E and choose a j
such that x ∈ [xj, xj+1]. Then for all k ≥ N , since each fn is monotonically increasing
we have

0 ≤ fnk
(x)− fnk

(xj) ≤ fnk
(xj+1)− fnk

(x)

< ε/3

so that

|fnk
(x)− f(x)| ≤ |fnk

(x)− fnk
(xj)|+ |fnk

(xj)− f(xj)|+ |f(xj)− f(x)|
< ε.

This completes the proof. �

Theorem 114. [Exercise 7.15] Let f : R→ R be a continuous function and let fn(t) =
f(nt) for n = 1, 2, 3, . . . . If {fn} is equicontinuous on [0, 1], then f is constant on
[0,∞).

Proof. Suppose that f is not constant and without loss of generality, let 0 ≤ x1 < x2
with f(x1) < f(x2). Since {fn} is equicontinuous, there exists a δ > 0 such that
|f(nt)− f(nu)| < [f(x2)− f(x1)]/2 whenever n ≥ 1, 0 ≤ t, u ≤ 1, and |t− u| < δ. Let
n be an integer with

n > max

{
x2 − x1

δ
, x1, x2

}
.

Set t = x2/n and u = x1/n; then 0 ≤ t, u < 1 and |t− u| = (x2 − x1)/n < δ so that

|f(nt)− f(nu)| = f(x2)− f(x1)

< [f(x2)− f(x1)]/2,

which is a contradiction. �

Theorem 115. [Exercise 7.16] Let {fn} be an equicontinuous sequence of functions on
a compact set K. If {fn} converges pointwise on K, then {fn} converges uniformly on
K.

Proof. Let ε > 0 be given. There exists a δ > 0 such that |fn(x)− fn(y)| < ε whenever
n ≥ 1, x, y ∈ K, and |x− y| < δ. The proof is now almost identical to part (2) of
Theorem 113. �
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Theorem 116. [Exercise 7.18] Let {fn} be a uniformly bounded sequence of functions
which are Riemann-integrable on [a, b], and let

Fn(x) =

ˆ x

a

fn(t) dt

for a ≤ x ≤ b. Then there exists a subsequence {Fnk
} which converges uniformly on

[a, b].

Proof. Since {fn} is uniformly bounded, there exists a M > 0 such that |fn(t)| < M
for all n and t. Let ε > 0 be given. Then for all |x− y| < ε/M and all n we have

|Fn(x)− Fn(y)| =
∣∣∣∣ˆ x

y

fn(t) dt

∣∣∣∣
≤
ˆ x

y

|fn(t)| dt

≤M |x− y|
< ε,

which shows that {Fn} is equicontinuous. Clearly, {Fn} is also uniformly bounded.
The result follows from Theorem 7.25. �

Theorem 117. [Exercise 7.20] If f is continuous on [0, 1] and if

ˆ 1

0

f(x)xn dx = 0

for all n = 0, 1, 2, . . . , then f(x) = 0 on [0, 1].

Proof. By Theorem 7.26, there exists a sequence of polynomials Pn such that Pn → f
uniformly on [0, 1]. For each n, write Pn(x) =

∑
k akx

k so that

ˆ 1

0

f(x)Pn(x) dx =

ˆ 1

0

f(x)
∑
k

akx
k dx

=
∑
k

ak

ˆ 1

0

f(x)xk dx

= 0.
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Since f is bounded on [0, 1], fPn → f 2 uniformly on [0, 1] by Theorem 102 and

f(x) = lim
n→∞

Pn(x)
ˆ 1

0

f(x)2 dx =

ˆ 1

0

lim
n→∞

f(x)Pn(x) dx

= lim
n→∞

ˆ 1

0

f(x)Pn(x) dx

= 0.

Therefore f(x)2 = 0 on [0, 1]. �

Theorem 118. [Exercise 7.23] Let P0 = 0, and define, for n = 0, 1, 2, . . . ,

Pn+1(x) = Pn(x) +
x2 − P 2

n(x)

2
.

Then

lim
n→∞

Pn(x) = |x|

uniformly on [−1, 1].

Proof. We have the identity

Pn+1(x) = Pn(x) +
[|x|+ Pn(x)] [|x| − Pn(x)]

2

|x| − Pn+1(x) = |x| − Pn(x)− [|x|+ Pn(x)] [|x| − Pn(x)]

2

= [|x| − Pn(x)]

[
1− |x|+ Pn(x)

2

]
.

By induction on n we have 0 ≤ Pn(x) ≤ Pn+1(x) ≤ |x| for all n whenever |x| ≤ 1. By
iteration,

|x| − Pn(x) = |x|
n−1∏
k=0

(
1− |x|+ Pk(x)

2

)

≤ |x|
n−1∏
k=0

(
1− |x|

2

)
= |x|

(
1− |x|

2

)n
.
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For n ≥ 1, function f(x) = x(1− x/2)n has derivative

f ′(x) =
(

1− x

2

)n
− nx

2

(
1− x

2

)n−1
=
(

1− x

2

)n−1 [
1−

(
n+ 1

2

)
x

]
which vanishes at x0 = 2/(n+1). This value satisfies f(x0) ≤ x0. Since f ′(x) > 0 when
0 ≤ x < x0 and f ′(x) < 0 when x0 < x ≤ 1,

|x| − Pn(x) ≤ 2

n+ 1

for all |x| ≤ 1. The result follows taking n large enough. �
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